BIMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT
 YELAHANKA - BANGALORE - 64
 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Semester: VII ECE
Course: DIGITAL IMAGE PROCESSING
Subject Code: 17EC72
Academic Year: 2020-210dd Sem
Course coordinators:
Dr.Surekha R. Gondkar,
Prof. Mamatha K. R.
Prof. Shilpa Hiremath

CONTENTS

Sl. No	Contents	Page No.
1	DIP_module1	1
2	DIP_Module 2_part 1	26
3	DIP_module 2_Part 2	51
4	DIP module 3	127
5	DIP assignment Mod 3	247
6	Morphology mod 4	249
7	color image processing	262

Digital Image Processing
Module 1
Syllaby: What is DIP?, Origins of DIP, Examples of Fields that use DIP. Fundamental Steps in DIP. Components of an IPsistern. Elements of Visual Perception. Image Sensing \& Acquisition, Image Sanpligy \& Unentization Some basic releforships b / n pixels, Linear $\$$ Nornlineal operations.
What is Digital Image Processing? (DIP) An image may be defined as a $x-D$ function $f(x, y)$ whee $x+y$ ace spatial (plane)
coordinates, is the amplitude of f at any pair of cobdinahes (x, y) is called the intensity or gray level of the image at that point.

When x, y os intensity values of f ace all finite \& discrete, we coll the image a Digital Image

DIP:- Processing fo dight el images by means of a digital computer.
The elements of digikl image- pixels, pels or pichuce elements of image elements. pixel is widely used

1) Image peoarsig \rightarrow Ils \& olpace images.
2) Image Andyis. (Image Understanding).
3) Compute vision.
2. The origins of DIP :-

One of the first appns if digital images was in the 1 newspaper industry, when pictures ween first sent by Submarine cable bin London \& Newlork.
Introduction of the Baetlane cable pichree transmission system in the early 1920 s reduced the time lequiled to transport a picture caccors the Atlantic from more than a week to less than 3 hrs.
Specialized printing equipment coded pictures fir cable transmission is then reconstructed them at the receiving end:
Some $f^{\text {the }}$ initial problems in improving the visual quality of these early digital pichnes wee related to the selection of printing procedures \&s the disteibaction of intensity levels.
Key advances made in the field of computers like, transistors, ICs, s / w libe cobol, Fortran, μP \& VLSI de helped the advancement in $D I P$.

1) Garmma-Ray Imging: Nucleal Medicirl \& Astronomical. Obsee vations.
\rightarrow PET (Posithon Emissim Tomogighy
(IIte to x-Roy fomogeydny (III le to x-Roy to mogeydy)

X-ray Imagin: Medival diagnostics, industey
Angiogriphy \rightarrow nojot appn-cmages of (Angiogrem) CAT-Computeized Axial Tomography.
Imaging in UV band: Lithography, industeial inspection, miceosopy, Lases, biological imasing \& asteonomind obseevations.
Imaging in the visible s Infared Bands: Light miccoscopy, asteonomy, remote sensing, industiny \& law en fricement.
Light micloscopy: Fhaimaceuticals a miclosinspection to matecials chalacterizatim.
Remotesensir: Satellite images - monitring environmend conditions. on the planet, veather obsecvatim s peediction also are mejo appn 8 meelispectiol imaxing form satellites.

Automated v visual inspection o manufacheed goods Pills, unfilled bottles, burned flakes, damaged lens etc before packing, Lehicle no ready etc or kufic moviting.

Imaging in the uwave band: Radar \rightarrow waves con penetrate the' clouds, ice, dry sad etc.
Imaging in the Radio band: Medicine s asteono MRI (magnetic Resonance Imagip) \rightarrow Medicine. places a patiat in a powerful magnet a parses radiowaंves the' his/hee body in shot pulses.
Examples in which other imaging modalides all used

Acoustic imasiy election microscopy synthetic imaging (compnter-genelated)

Mincul x oil exploration

Fundament el steps in Digital Image Processing. outputs of these processes genceally ace images.

Fundamental steps in DIP
(1) Damage acquisition: x_{0} first process in above fig. (D, P) It involves Image collection, peepeocersing (such as soling.)
(2) Image filtering s enhancement: It is a ploces of manipulating an image so that more suitolle for a specific app." Specific \rightarrow Technique which is suitable for x-Roy enhancement is not sciteble for satellite inge
(3) Image Restration: Improves the appearance of an ionage based on mathematical model.
Enhancement \rightarrow suljeche
(4) Color image processing: This area is gaining importance because of Significant inverse in the use of images over the Internet.

Scanned by CamScanner
(5) Wavelels. (\& multiresolution peocessing): Representing inages in various degrees of resolution. inges are sublivided into similae egione.
(6) Compression: Reduces the strage required to save an inage or bandwidth required to thansmit it. EG:- ZIP, JPEG
(7) Morphological plocersing: Tools for extecting Ponage components that are useful in the lepleastation \& doscliption of shape.
(8) Segmentation: Plocedure pactitions an inage into its constituent pacts or objects.
(a) Representation \& desceiptim: olp of eegrinentation stage. region or all the poinel as featrue selection. Desceiptim'. also calle atteibutes that result in some deals sith exteaching in of inferest. quantitatire in foma Label to an object baxed
(10) Recognition: assigns a

Imageplocessing is a nethod to connect an inage into digital firm pupen some opeeations on it, in ordee to get an enhanced inage or to exkact some useful infn grom it.

3 steps:-
(1) Importing an Inage witn optical sconnee or by digitit photoglephy.
(2) Analyzing \& manipulating the inage whinh includes data complestion \& image enhancement
(3) Onfout inage - result $<$ altered inage $\begin{aligned} & \text { repst based on inage analyels. }\end{aligned}$

Components of an IP system

Sensing:- Q elements ace equeeal <pphysical dectce is eneegy tadiated eneesy eadiated by wish to ingege.
digitizee.
(Ole of device to dyine fin)

Specialized IPH/u:
Digitizee + ALV (Arithoratic/logind opts 6 in palallel)
Eg'- Aveeaging.

Comphtee: - y P PC to supee comphtee.
\rightarrow opriline IP tasks.
Softoare:- specialized module
\rightarrow specific tasks
Matlab, C, Octore, Scilab, Plython, Java.
)
Mass Storage:- is a must
1024×1024 - size in which each pixel pixels is an 8 bit quatity.
1 inge \rightarrow requses 1 mbyte 8 stoge.

Starge is messuied in bytes (8 buts $=1$ byte)

$$
\rightarrow \text { peovide }\left\{\begin{array}{l}
200 \mathrm{~m} \\
\text { sceoll } \rightarrow \text { vecinal shift } \\
\text { pam } \rightarrow \text { Hizonhe sinft. }
\end{array}\right.
$$

Disploys:- cols monities t graphic coeds.
Haedcopy devices \rightarrow laser printers, film comeus, heat sensitive devices, injet unter CD ROM disbs key consideatn is BL
N/W:inage tansonsm optial fiber \rightarrow
\& beoadsues.

Elements of Visual Peecoption

alian fible alian mule.

Hoigonse crobs Clm 8 heman eye
-sheeth
\rightarrow avg diamete 20 mm
$\rightarrow 3$ membans
(1) Cornea \& Sclera ontee covel
(2) Choroid
(3) Retina.
\rightarrow Cornea \rightarrow tough, transparent tinsue
Sclera \rightarrow Dpague membrane
\rightarrow choroid \rightarrow below Sclera
(2) N/w of blood vessels \rightarrow major sonece qnukition to the eye.
(3 Ceven single infly \rightarrow not secions - blocbs blood flow ex. light entery the eye.
(5) choroid $\sqrt{\text { Ir's }}$ cilialy body.

Isis contacts or expands to contcol the amount of light 8 that enters eye.

Pupil - Varies in diameter 2 to 8 mm .
Front of the wis \longrightarrow Visible pigment of the eye back \longrightarrow black pigment.

Lens $\rightarrow x$ made up of concenteil loges of fibrous cells \& is suspended by fleer that attach to the ciliary body.
, contains 60 to 70% water, 6% fat 5 more plotien.
y colored by a slightly yellow pigmentation p ses with age.
\rangle Excessive clouding of the eye \longrightarrow Cataracts lead to poor color discrimination \& lois of clear vision.

* UV IR light due absorbed by peatiens whin the lens if excessive, con damage the eye,

Retina x Innermost membrane of the eye, which lines the inside of the wall's posters portion,
) x when light from an object imagined on retina, eye is property focussed,

- Two classes of receptor F cones

Cones - $7-8$ million located primally on the central portion fore retina, called the fovea, au sensitive to cols.
cone vision - photopic / bright light vision.

Rods - 75 to 150 millim; as many receptirs ace covapelted to a single nerve, reduce the amount i detall-recoptre: Scotopic/elim-light v vision.

degas for visual axil (center 8 fovea)
Distribution 8 rods
s cones in the retina

Figure (1) abe shows the density of rods is cones for a cos section of the light eye parsing the o the legion of emergence of the optic nerve from the eye.

The absence of receptor - blind spot.
Receptor density is measured in degrees from the fovea.

$$
\begin{aligned}
& \text { n the fovea. } \\
& \frac{15}{100}=\frac{h}{17} \Rightarrow h=2.55
\end{aligned}
$$

Image formation in the eye

Cones \& Rods \rightarrow convect light into nerve impulses sent to the brain along the optive nee.
Images formed anywhere otheethan on the retina ace not transmitted effectively to the brain os hence Visual impalement
eyperight, visim, seeing \longrightarrow Visual perception.

* In human eye, distance b/n the lens \& the imaging proper focus is obtained by varying the shape $O^{\text {the }}$ hons. The fibers in the ciliary body distant of near objects respect or thickening the lens for alston -vely.

Perception then bokesplace by the relative excitation of light receptors which transfix radiant energy into electrical impulses that are ultimately decoded by the brain.

Brightness Adaptation \& Dis ceifnivation
Experimental evidence indicates that subjective brightens (intensity as perceived by the human visual system) is a logarithmic function of the light intensity incidence on the eye

Erightress adaptatm - changry its ovecoll sensining.
Disviminatio':- $\quad 0^{I+\Delta I} \quad \frac{\Delta I C}{I}=$ water ratio.
$\Delta f_{e} \rightarrow$ incurrent if illuminahm disceiminable 50\%. If the time with back genl illuminator I

Weber ratio as a for of intensity.

Lineal Vs Nonlineal Operations
One of the nost imp. clasigicatim of an ip method is whethee it is lineal or nomlinare.

$$
\begin{aligned}
\text { Lineviy }=\text { additivy } & + \text { homogeneity } \\
H[f(x, y)]=g(x, y) & H \rightarrow \text { lincee opecatr } \\
H\left[a_{i} f_{i}(x, y)+a_{j} f_{j}(x, y)\right] & =a_{i} H\left[f_{i}(x, y)\right]+a_{j} H\left[f_{j}(x, y)\right] \\
& =a_{i} g_{i}(x, y)+a_{j} g_{j}(x, y) \\
\sum\left[a_{i} f_{i}(x, y)+a_{j} f_{j}(x, y)\right] & =a_{i} \sum f_{i}(x, y)+a_{j} \varepsilon f_{j}(x, y) \\
& =a_{i} g_{i}(x, y)+a_{j} g_{j}(x, y) .
\end{aligned}
$$

Let $f_{1}=\left[\begin{array}{ll}0 & 2 \\ 2 & 3\end{array}\right]$ \& $f_{2}=\left[\begin{array}{ll}6 & 5 \\ 4 & 7\end{array}\right]$

$$
\begin{aligned}
& a_{1}=1 \& a_{2}=-1 . \\
& \max \left\{1\left[\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right]+(-1)\left[\begin{array}{ll}
6 & 5 \\
4
\end{array}\right]\right\}=\max \left\{\left[\begin{array}{ll}
-6 & -3 \\
-2 & -4
\end{array}\right]\right\}=-2 \\
& 1 \max \left\{\left[\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right]\right\}+(-1) \max \left\{\left[\begin{array}{ll}
6 & 5 \\
4 & 7
\end{array}\right]\right\}=3+(-7)=-4
\end{aligned}
$$

max is hontincal.
Lincae opections ace exceptionally imp.

Imge Sensing s Acquisition
Most of the images in which ve aee integested aee genesated
 absopton of eneegy from the sonece by the eloments of the 'slene' being imaged.
E.'- illuminstion may originete from a sowece of electormagastic onagy such as Radae, infared, \& x-ray system.
x-rays pars the' a patient's body for the phepose of agneeating adiagonastic x-ray film.
Thece plincipal sersor arrangenats
(a) Single imasing sens used to koneform illumination eneegy into
(a) Single Imaging Sensor:

(b)
(5) Live Sensic
(c) Array sensor.

Pdes: - Incoming energy is kangforned inb a velteos by to combination of ilp electical povee serse rratesjal ie rapsonete to the pacticulal type of energy being detested.

The olp Vtg wif is digitized to get diritel quarts.
Image Acquisition using a lingle Sinsi
Flg a. shous the components of a single lerdt. , photodicdis which is contructed of silicon matitial shoxe of uty is prifttional to light.
) The use of a filtee infiont of a sinsit impiovet ielectivat.
EG:- Green filtee favons light in the guen band if tra def speckum. ue sensor olp will be skongel for quen ligtt tan for othee components n the visible speckum.
fis shos an areangemat uxd in hig-pleciom sconning, whece a film negative is mounter onb a ditum whose meclanical rotation peovides displacionet on ore diras.

Image Acquisition using Sensa Staps

(CAT)
(Indusfial in n. Circulel Sensi Steip
(Ring confogueaton)
Image Acquisition Toolbas \rightarrow ereble you to connect Ondustcial \& scientific cameras to matlab/simulint
Lineal Sensorsteip: In-line Sensirs ace uxed loutinely to airboine inaging apprs, in which the imaging system is mourted on an allcuft thet flies at a constont altitude is speed ovee the geographical alea to be inaged.

1-D imaging sensor skips that lespond to Valious bands of the electoomgnetic specteum due mounted \perp^{r} to the dielction of flight.

Radiance - Totel amourt of energy that flows from the light sonce (ω)
Luminance (lumens L) $=$ measuce of the asnount 8 eneegy as obsever percieves frem a light source.
Brightress - Subjective desciptr of light perception peactidally impossible to measue.
A rotating x-ray sonece provides illumination \& the senors opp. the sonce collect the x-ray sovides illuminatins
(2) This is the bassis opp eneyry thet passes the med the ob/cct. Axial Tomogrephy.

CAT-plinciple is also used in MRI-Magnefic Resomance Ionaging \& $P E T$-Positim Enission Tomoglaghy.

Image Acquisition Using Sensi Arrays

Typiod Sensir - CCD - Clage Conpled Device
Digirl comeses - predominant. \& for austonomial apprs reoise reduction is achieved by letting the senso integeree the ilplight signel ovel mins of even houls.
x Mation is not requied

II Chaptee:- Some brovic Peleniontipe Letoven pinels

$$
f(x, y) \rightarrow \text { imege }
$$

(1) Neighbers of a pixel:-.
d pioel p at coordinates (x, y) has 4 hrigartil y

Vectical neigubors

$$
N_{4}(p) \text {-red. } \quad N_{D}(p) \text {-blact. }
$$

3 type
(a) 4-neighbors, N_{4}
(b) Diagonl reighbs, N_{D}
(c) 8 -neghbis, N_{8}.

Together $N_{g}(p)=\underset{4}{N}(P) \cup N_{D}(p)$
(11) Adja ency:

Connectivity bin pixels is a fundarrent concept that Simplifies the def of numerous digital image concepts, such as regions and boundaries
To determine if the 2 pixels ace commected/adjacent ot not, then are 2 conditions:
(a) Two pixels should be neighbors
(b) Their grey levels should be similar.

3 types 8 adjacencies are defined: (a) 4-adjacency
Binary image \rightarrow graylivel values ace 0 or 1 .
(a) 4-adjacency:

2 pixels p and q are soled 4 adjacent if p \&q have same value $(0 \& 1)$ \& q is in $N_{4}(p)$

$$
\begin{align*}
& 000 \\
& 0 \begin{array}{ll}
0 p 1 q_{1} & p \& q_{1} \rightarrow 4 \text { adjacent } \\
0 & p q_{2} 0
\end{array} \begin{array}{l}
\text { p\& } q_{2} \rightarrow \text { not adjacent. }
\end{array} .
\end{align*}
$$

(b) 8-adjacency:

$$
\begin{array}{llll}
1_{q 1} & 0 & p \& q_{1} \rightarrow 8 \text { adjacent } \\
0 & 1 p & 1 q_{2} & p \& q_{2} \rightarrow-i- \\
0 & 0 & 0 q_{3} & p \& q_{3} \rightarrow \text { are not } 8 \text {-adjacent }
\end{array}
$$

(c) $\quad m$-adjacent (mixed):
(i) q is in $N_{4}(p)$
(ii) q is in $N_{D}(p)$ \& $\left\{N_{4}(p) \cap N_{4}(q)\right\}$ is not some as p.

Graylevel?
Two pixels p \& or with values
In binate image $\rightarrow V=\{1\}$ Set of gray (18)
from V are 4 -adjacent if g is livelvalues used to define adjacency. in the set $N_{4}(p)$

$$
V=\{11,12 \ldots 25\}
$$

8-adjacent if q is in set $N_{\delta}(p)$.
m-adjacent if q is in $i N_{4}(p)$ sri) $N_{D}(p)$ and the set has no pixels whose values dee form V.
ie (ii) q is in $N_{D}(P) \& \quad\left\{N_{4}(p) \cap N_{4}(q)\right\} \notin V$.

4-adjacency:

$$
V=\{0,1,2,3,4\}
$$

$p \& q_{1} \rightarrow 4$ adjacent

$$
\begin{aligned}
& p \& q_{3} \rightarrow-1- \\
& p \& q \rightarrow \text { not. }(\because 20 \text { in not in } \mathrm{V})
\end{aligned}
$$

$p \& q_{4} \rightarrow \operatorname{Not}(\because 1$ is not 4 neighs $)$

8 -adjacely

40	4	1929
3	$0 p$	20_{43}
80	75	5094

$$
\begin{aligned}
& p \& q_{1} \rightarrow 8 \text { adjacent } \\
& p \& q_{2} \rightarrow 8 \text { adjacent } . \\
& \text { Not } 8-a d
\end{aligned}
$$

P\& $q_{3} \rightarrow$ Not 8 -adjace $\quad(\because 50$ is not in $V)$
$p \& q_{4} \rightarrow$ Not
m-adjacency

$p \& q_{1} \rightarrow$ m.adjact
ps $q_{2} \rightarrow$ not m-adjanat

$$
p \& q_{2} \rightarrow q_{3} \rightarrow \text { madjacest. }
$$

(iii) Connectivity - 2 pixels are connected if they are adjacent

Two subsets ace connected or adjacent if some pixel in S_{1} is adjacent to some pixel in S_{2}.

$$
V=\{1\} .
$$

(iv) Regin:-
R is a subset of

Resin in an inge.
Every pixel in R is connected to other pixels in R, then $R \rightarrow$ Region
v) Boundary:- Set of pixels in the regin that have one or more neighbors that are not in R.

Edge if aregin \rightarrow Boundary.

(vi) Path - count of connected pixels. $=$ Lerget of pats. If first pixel $=$ last pixel then closed path.
n. - onooctimo

Pans
A digithl pathe b/n pixel p having co-mdinates (x, y) to pixd q with (u, v) cooidinates is a sequence of connected piads $(x, y) \quad\left(u_{0}, y_{0}\right)\left(x, y_{1}\right) \ldots(u, v)$

' enger of the path is courd of connected pioch
If firt pixel is same as lost pivel u $(x, y)=(u, \omega)$ it is colled cloed pth
0) Distance measule:- D' (p, q) Distence b/n $p 5 q$.
(i) Dis $(p, p) \geqslant 0$ If $p=q \Rightarrow \operatorname{Dis}(p, q)=0$
(ii) $\operatorname{Dis}(p, v)=\operatorname{Dis}(q, p)$
(iii) $\operatorname{Dis}(p, z) \leqslant \operatorname{Dis}(p, p)+D_{s}(q, 2)$
(1v) Euclidean distence

$$
\operatorname{Dis}_{p}(p, q)=\sqrt{(x-s)^{2}+(y-t)^{2}}
$$

Eg:- For $V=\{0,1\}$ find the leger o shoitst $4,8 \times$ m-paths b / n poq. Repent for $U=\{1,2\}$ for the given inage.

$$
\begin{array}{llllll}
3 & 1 & 2 & 1 & (q) \\
2 & 2 & 0 & 2 & \\
1 & 2 & 1 & 1 & \\
(p) & 1 & 0 & 1 & 2
\end{array}
$$

Siv
4-path:$\begin{array}{cccc}2 & 2 & 0 & 2 \\ 1 & 2 & 1 & 1 \\ 1 & & 1 & 1 \\ 1 & 0 & 1 & 2\end{array}$ path stuerts fom p bat doesnot reach q as no patn exist b/n q s prev. pixel.

(P)
spath is not
arigue
$312,16)$
2202

$1 \rightarrow 0 \rightarrow 12$
(p) m-path $\begin{aligned} & \left(\text { min } 0, f_{0}\right) \\ & =5\end{aligned}$

II
fir $v=\{1,2\}$
Lepath

(P)

4 path (not unighe)
\min lengte $=6$

8 path $\min \log \epsilon=4$

HW. $F G, V=\{2,3,4\}$ Compnte the legtes of shortist 6,8, tapoty b/r pay fis the following inge.
(3) In image of sige 630×480 hes 24 bit cols. Calcelote the memsy sequiled by the ingeg.

$$
\begin{aligned}
S & =M \times N \times k . \\
& =630 \times 480 \times 24=7.2576 \text { Mbit. }
\end{aligned}
$$

 $\times 1024$ \& no. \& grey levels are 128.

$$
125=2^{k} \Rightarrow 7 k=7
$$

$$
L=2^{L}
$$

$$
b=1024 \times 1024 \times 7=754
$$

$M \times N \rightarrow$ sici of ariay (pinels)
(image)
$L \rightarrow$ disaite intensity livels
Due to strage squanzing h/w considecations, no. of intenaity levils $L \rightarrow$ Intaie pouse of 2 .

$$
L=2^{k} \quad k \rightarrow \text { bt inge } \quad \text { if } k=8 \text { then } L=2^{8}=256
$$

$b \rightarrow$ no. \& bite iequied do sine a digitied inage.

$$
b=M \times N \times K
$$

when $M=N$ then $b=N^{2} t$.

E5:- 512×512 inge nth 256 glaglevels at 300 bandrate. How many mins wenld it toke to kannt?
(baudrate \rightarrow no. ob transmitted (sec.

$$
\begin{aligned}
& \text { Assums each byle is one paocet win stut } L=2^{8} \\
& b=m \times n \times k \text {. bit a'stop bit) } \quad k=8 \text {. } \\
& \operatorname{Time}=\frac{m \times N \times k}{\text { bandrete }} \text { secs. } \\
& =\frac{512 \times 512 \times 8}{300}=\text { secs }
\end{aligned}
$$

\Rightarrow Image Sampling \& Quantization

* Continuous image $f(x, y)$ is converted to digital form
* Image may be continuous wist x \&y coordinates \& also in amplitude
* Digitizing the co-ordinate values is called sampling \& digitizing the amplitude values is called quarilzaton

Scan line from A to B

Sampling \& suantiation

$$
A \ldots \quad, B .
$$

$$
\begin{gathered}
\therefore \ddots \ddots \\
\cdots+1+4
\end{gathered}
$$

Digital scan line

* In order to cooveret to digital function, the gray level values also must be corrected (quantized) into discrete quantities
* Starting at the top of the image of carrying out this procedure line by line produces a 2 D olyital image

Continuous image
projected onto a
censor array

result of image
sampling \&
Quantitation

Spatial Domain dinge Enhancement
Module 2

Image Enhancement

$$
\begin{aligned}
& \text { Inge Enhancomed } \\
& \text { Spatial Irmetion } \\
& \text { domain domain }
\end{aligned}
$$

Spatial domain - operate directly on the pixels of an image
as opposed (frey domain) in techniges
Frequency domain operations are peefrimed on the FT of an image, rather than on the image itself.
\rightarrow (1) $g(x, y) \rightarrow$ op image
$T \rightarrow$ operate on f defined over a neighborhood of point (x, y) Baric implementation of eq. (1).

$$
S=T(\gamma)
$$

$T \rightarrow$ intensity kansfomation f^{n}
$S \rightarrow$ Intensity of gog

dackenig the inge intensity levels below K \& blightery the levels above k.
ivodule2: Spatial Domain: Some basic Intensity Transtanation Functions, Histogram peocersing, Fundamentals of spatial filtelig, smoothing special filters, sharpening spatial fitters. Frey. domain: Preliminary concepts, DFT I 2 yaliables, properties of $2 D D F T$, Fit Hing in fir. doman, Image sm
$3.2-3.6$ a using ter domain filters, Selechure filtering, $4.2,3.6-4.5-4.10$

Thresholdiy.'
bing inge (only Black\& white)

Entancement:- peoces of maripulaty an inge so that the remilt is mare suitable than the seiginal for a spectific app ${ }^{n}$.
$x-r y$ is alfent
set inger - Ir are delfent.
No gencel "thery". simple "basic.
viewee in the uetimate judge.
But machine peeception \rightarrow quantify.
Eg. Charactee refognition \rightarrow one level of entencent is
Baric Anutionsts Tracfernetion furctins
(1) Linal (Negatre \& Identify)
(2) Logaithmic ($\log \&$ inveise \log)
(3) Powel-law ($n^{\text {tm }}$ powee \& $n^{\text {th }}$ root)

Image Negatre:-

$$
S=L-1-\gamma
$$

photoghatic - ve.
snitable for white/gry details in drele eyims

Eg!- $x^{-r a y}$ mamrigem
(2)

Log tranfinations
\therefore

$$
S=c \log (1+\gamma)
$$

To expand the values of dacle pisels in an inage while compersing hifer-level vabes.

Eq': Expand Foneree s pectum

Powee-law (gainma):

$\mathrm{Ck} r \rightarrow$ twe constals.

$$
\begin{aligned}
& \text { twe constals. } \\
& \begin{array}{l}
S=C(\gamma+\epsilon)^{r} \\
C=r=1 \rightarrow \text { phefect (nes lected) }
\end{array}
\end{aligned}
$$

Piececons-Linere Trasforndm Findrs
Bot plane Sleicing
tray level slicing contest stretchig
Intersity lind slicing.

Contrast Stuetching;
Simplest piecestre-lnee transfoncoino of? low contrast ingees. \rightarrow poor Hellecrination lack dypranuc rage in the
arong lens

controust stecchy \rightarrow ip dynarmic range $f^{\text {the }}$ graylends:- inoge peocers locations $(\$ 1, s 1) \&\left(s_{2}, s_{2}\right)$ contiol the shape $f^{\text {the }}$ tranefination. (4) If $\left.\begin{array}{l}r_{1}=s 1 \\ r_{2}=s_{2}\end{array}\right\}$ Lineal f^{n}
$\left.r_{2}=s_{2}\right\}$
If $r_{1}=r_{2} \& S_{1}=0, s_{2}=l-1 \rightarrow$ Thresholding $f^{n} \rightarrow$ Sinaly
inage
Internediato values of $(281,51) \&\left(r_{2}, s 2\right) \longrightarrow$ variaus dyeas of
araulacls

If $r_{1}=r_{2}=m \Rightarrow$ mean gray level
Graylevel sticing:
Highighting a specific range of gray levels in an conage often is destred.
Applications - (1) wathe masses in staws in x-rays. ineges
(2) flaws in x-rays.

Sevceal wags of sliciry but 2 ing, basic thanes:
I thigh value fir all gray levels of haye of interest \& low value all other gray lecels.
II Brightening the desired range preseving backeoud graylevels but preseving backegeoud greyelded tonalitics

Highligers range (A, B)
peseves all othee levels and othes constant level

Bit-plane slicing
8 bort inge - 8tbit plans
bit plane $0-L S B$
bil plame 7 - MSB

used for inoge conplession

Bit plane exkactim
Histograsm Processing
Ohe histagram of a digitel inage sith intensity levels in the range $[0, L-1]$ is a discrete function $h\left(r_{k}\right)=n_{k}$, where r_{k} is the km intensity value \& $n_{k} \rightarrow$ no. of pixels in the image ith intensity r_{k}.
$M \times N \rightarrow$ rou $\&$ columns of inege matix.
Nemalizing histogeam is goven by $p\left(r_{k}\right)=\frac{n_{k}}{M N}$.for $k=0,1,2, L-1$
$p\left(r_{k}\right)$ is an estinate of the prob. of occurrence of intensity level r_{k} in an image.

The sum of all comporents if a nomaliged histogem is equel to 1 .
thistoglams are \longrightarrow basis for numecons spatial doman peocssing technigues
popular tool in IP.(real tima)
histogem of dack inege.

Low contrast ligt inage inage.
 high-corkest inage.

Efstogren Equalizari- process that attempts to spread out the grayluels in an mage so that they are evenly distributed aces their range.

Histogram equalisation reassigns the lightness values if pixels based on the linage histogram.

Procedure: -
(1) Find the running sum of the histogram values.
(2) Normalise the values from step (1) by dividing by the total no. of pixels.
(3) Multiply the values from step (2) by the max. gray. bed
(4) Map the grayluel values to the les respondence.
(9) Peefon histogram equazation of the image $\left[\begin{array}{lllll}4 & 4 & 4 & 4 & 4 \\ 3 & 4 & 5 & 4 & 3 \\ 3 & 5 & 5 & 5 & 3 \\ 3 & 4 & 5 & 4 & 3 \\ 4 & 4 & 4 & 4 & 4\end{array}\right]$

Max vale $=5$
$\operatorname{nin} 3$ bits to represt 5 .

Ore-the-ore Corespondence.

Origind gey lued	0	1	2	3	4	5	6	7
Histogan equ-ber whes	0	0	0	2	6	7	7	7

Code:-
Cl ;
chee all;
close all;
$a=\operatorname{imread}\left({ }^{\prime} \ldots \cdot p g^{\prime}\right)^{\prime}$,
$b=\operatorname{Listeq}(a)$;
inshow (a) inshou(b)
inhist (a) inhist (b)
Considee for a moment contincons intersily values s let ' s ' denote the intensities f an inage to be plocessed.

$$
\begin{aligned}
& r \longrightarrow[0, L-1] \text { renge. } \\
& r=L-1 \rightarrow \text { Late }
\end{aligned}
$$

Let $S=T(r) \quad 0 \leqslant a \leqslant L-1$ (intering Traspinden) We arsume (a) $T(r) \rightarrow$ monotonically $p \mathrm{~s}^{n}$. in O t $L-1$
(b) $0 \leqslant T(r) \leqslant L-1 \quad$ \& $\quad 0 \leqslant r \leqslant L-1$
(0, $r=T^{-1}(s)$ fro $0 \leq s \leq L-1$ then
Skictly ifn in $0 \leqslant \Omega \leqslant L-1$
$T(8)$ is a

Skictly mondoricle pfn

Let $p_{r}(r) \& p_{s}(s) \longrightarrow P D F_{s}$ of $\& \& s$. [peob. denaity fn]
$P_{S}(s)=p_{r}(r)\left|\frac{d r}{d s}\right| \quad$ PDF of trangfined inge.

$$
\begin{aligned}
s & =T(r)=(L-1) \int_{0}^{r} p_{r}(\omega) d \omega \rightarrow \\
\frac{d s}{d r} & =\frac{d T(r)}{d r} \\
& =(L-1) \frac{d}{d r}\left[\int_{0}^{r} p_{r}(\omega) d \omega\right] \\
& =(L-1) p_{r}(r) \\
P_{s}(S) & \left.=p_{r}(r) \left\lvert\, \frac{d r}{d s}\right.\right) \\
& =p_{r}(r)\left|\frac{1}{(L-1) p_{r}(r)}\right|=\frac{1}{L-1} \quad 0 \leqslant S \leqslant L-1
\end{aligned}
$$

$P_{S}(s)$ is aloogs is unifom independenty of the firn $f P_{l}(r)$.
Eg:-

$$
\begin{aligned}
& p_{r}(r)=\left\{\begin{array}{cc}
\frac{2 r}{(L-1)^{2}} & 0 \leqslant \gamma \leqslant L-1 \\
0 & \text { otheine. }
\end{array}\right. \\
& S=T(\gamma)=(L-1) \int_{0}^{r} p_{\lambda}(\omega) d \omega=\frac{2}{L-1} \int_{0}^{r} \omega d \omega \\
& 33=\frac{r^{2}}{L-1}
\end{aligned}
$$

$$
\begin{aligned}
p_{s}(s) & =p_{r}(r)\left|\frac{d r}{d s}\right|=\frac{2 r}{(L-1)^{2}}\left|\left[\frac{d s}{d r}\right]^{-1}\right| \\
& =\frac{2 r}{(L-1)^{2}}\left|\left[\frac{d}{d r} \frac{r^{2}}{(L-1)}\right]^{-1}\right| \\
& =\frac{2 R}{(L-1)^{2}}\left|\frac{(L-1)}{2 r}\right|=\frac{1}{L-1} \rightarrow \text { uipmom }
\end{aligned}
$$

Discrete firm of the Kensifination

$$
\begin{array}{lr}
\text { Secrete foin of the kenifonann } & p_{2}\left(r_{k}\right)=\frac{n_{k}}{M N} \\
S_{k}=T\left(r_{k}\right)=(L-1) \sum_{j=0}^{k} p_{k}\left(r_{j}\right) & k=0 . L-1
\end{array}
$$

$$
p^{\operatorname{pot} p_{p}(v)} v / s x_{k}=\frac{(L-1)}{M N} \sum_{j=0}^{k} n j
$$

$$
k=0 \cdots L-1
$$

$N N \rightarrow$ total no. of pixels in the image $n g \rightarrow$ no. of pixels that have intensity value r_{j} $\alpha \rightarrow$ total no. f possible intensity levels in the inge.
Computing the kensfimation on $G\left(z_{q}\right)=(L-1) \sum_{i=0}^{q} P_{z}\left(\sigma_{i}\right)$

$$
\begin{aligned}
& G\left(z_{q}\right)=s_{k} \\
& \quad \& z_{v}=G^{-1}\left(s_{k}\right)
\end{aligned}
$$

Fletitnane fulogil loperebine
Acipbonthood opectim:- The pioels in an image ace modified based on some function of the pixels in their neighborhood.
Lineal fitherin: Each pixel in the ip image is replaced by a lineal combination of intensities of neigharig pixels. ce each pixel value in the op ingege is a weighted sum of the pixels in the nerkbowhood of the corresponding pixel in the ils inge.
Linese filtering con be used to smoothen an image as well as sharpen the image.

Mean filter:- (Avg filter/LPF)
Replaces each pixel by the avg of all the values in the local neizbovehood.

$$
\begin{aligned}
& \begin{array}{l}
\text { Ea:- } \\
3 \times 3 \text { make }
\end{array}=\frac{1}{9} \times\left[\left.\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array} \right\rvert\,\right. \\
& \text { of } 5 \times 5 \text { mast }=
\end{aligned}
$$

Limitakims :-
(1) Avg operation leads to the blurring of an image. Blurring expetr featuce localisation.
(2) If the avg operation is applied to an inage corrupted by inpulse noise then the impulse noise is attencuated f diffesed but not semoved.
(a) Image addition:'
"Superimposing inges"

$$
\frac{\text { mage addilim: }}{c(m, n)=f(m, \pi)+g(m, n)}
$$

$$
=\square \quad 0
$$

"Detecion"

$$
\begin{aligned}
& a=\text { imroad }\left({ }^{\prime} \quad 1\right) ; \\
& b=\text { inroal }\left(C^{\prime} \quad 1\right) ; \\
& c=\text { donle }(a)+\text { dovle }(s) \text {; } \\
& \text { inshou }(c) ;
\end{aligned}
$$

(5) Imoge sultaxin:

$$
c(m, n)=f(m, n)-g(m, n)
$$

$$
\Delta(m, n)=\square \square \square
$$

(c) Multplication/Divism: "Backgoond Suppeosin"
\rightarrow wed fo Masking

$$
\begin{aligned}
& 0^{0} 0 \times \\
& a=\operatorname{imreal}(1,1) ; \\
& b=0.35+z \cos (242,308) ; \\
& {[m n]=\operatorname{size}(b) ;}
\end{aligned}
$$

for $i=20: 98$

$$
\begin{gathered}
\text { fr } j=85: 104 \\
b(i, j)=1 ;
\end{gathered}
$$

end
ed

$$
c=\operatorname{doable}(a), * b \text {; }
$$

Meanfilta
如! -

$$
\left|\begin{array}{lll|lll}
1 & 2 & 3 \\
2 & 4 & 5 & \stackrel{\text { Meanfilta }}{3 \times 3 \text { boxfilfec }} & \left.\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 3
\end{array} \right\rvert\, & 2 \\
2 & 3 & 5 \\
3 & 4 & 3
\end{array}\right|
$$

Median fitter - Order-Statistic(s Non lineal) fibte. effectre-stult 4 peppee vowre, impalse
 hase

Salt poise

median,

$$
\begin{aligned}
& \text { 0,21,22, 24, 24, 31,32, 33,25 medion filterd } \\
& \underbrace{0,24,2 r, 26,28,} \underset{\substack{\text { medim } \\
\text { medm }}}{\frac{3132,32,33}{24}} \quad\left[\begin{array}{cccccc}
22 & 33 & 20 & 32 & 24 \\
34 & 24 & 25 & 28 & 26 & 23 \\
23 & 21 & 32 & 31 & 28 & 26
\end{array}\right]
\end{aligned}
$$

$$
0,23,24,25,26,28,31,32
$$

Othee - nonlinee filter - Max filter min filter.

Shorpening spatial filters
Principal objeche - to highlight Kansitions in intensity uses - electemic pristing, medicd inaging - Indesty, mility ypy.
avg \rightarrow cont \rightarrow integration (analogens) \rightarrow couses blurring,
Sharpening \rightarrow spatial deffectitation
Image difectition entanus edges is othee discontinueitics
I derivative: - $\frac{\partial f}{\partial x}=f(x+1)-f(x)$ (pactil-dearatre)

$$
\frac{\partial f}{\partial x}=\frac{d f}{d x}(16 \text { only one lyfebetrace in } f n)
$$

II odree deevatre:-

I deervhe $0000-1-1-1-1-10000050000$
IIderate $00-10000100005-5000$

Zevoccossing is usegul - locate edges

Obseercter
(1) constent intersines I devivine \rightarrow geo .
(2) Step/ramp \rightarrow Nonzeo.
(3) along ramps-Nonge II deanche.
(1) Conshat intersitics 8°
(2) onset siend of raup/step - Nonzo.
(3) along raps -zeo.

Using the second Derivative ft Image Sharpening. The Laplacian, (14)
Isotropic filters; rotation invariant
Rotating the images then applying the filter gives the same result as applying the filter to the image first \& then rotating the result.
Simplest isotropic derivative opeeath is the Laplacian.

$$
\begin{array}{r}
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \quad \text { for an inge } f(x, y) \\
f^{2} f^{2} \text { valialles, }
\end{array}
$$

Laplacian is a lineal opelati
In the x-diction, we have $\frac{\partial^{2} f}{\partial x^{2}}=f(x+1, y)+f(x-1, y)$ $-2 f(x, y)$
Similarly, in the y-diecoim,

$$
\begin{aligned}
\frac{\partial^{2} y}{\partial y^{2}} & =f(x, y+1)+f(x, y-1)-2 f(x, y) \\
\therefore \nabla^{2} f(x, y) & =f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1) \\
& -4 f(x, y)
\end{aligned}
$$

Masks:

1	1	1
1	-8	1
1	1	1

$$
\begin{array}{|c|c|c|}
\hline 0 & -1 & 0 \\
\hline-1 & 4 & -1 \\
\hline 0 & -1 & 0 \\
\hline
\end{array}
$$

Unshap masking \& High boost filtering
Subtracting an unshalp (smoothed) version of an inge from the biginal image
3steps: (1) Blue the siginal image
(2) Suokact the blurred inge form the digind
(3) Add the mask to the bigine.
$f(x, y) \rightarrow$ bigind $\quad f(x, y) \rightarrow$ blurred

$$
\begin{aligned}
& g \in f \quad g_{\text {mast }}(x, y)=f(x, y)-\bar{f}(x, y) \\
& g(x, y)=f(x, y)+k * g_{\text {mast }}(x, y) \quad k \rightarrow u t .
\end{aligned}
$$

if $k=1 \rightarrow$ proass is welled?
unshap masking.
if $k>1 \rightarrow$ peocers is called Highbost fittery.

1D illustahin of the neclanis of unshap musking.

- sin I ordee decivarnes or (Nonlincal) inage sharpeniy.
theote The Gradiat.

$$
\begin{aligned}
& \bar{\nabla} f=\operatorname{grad}(f)=\left[\begin{array}{l}
g_{x} \\
g_{y}
\end{array}\right]=\left[\begin{array}{c}
\partial f / \partial x \\
\partial f / \partial y
\end{array}\right] \quad \begin{array}{l}
\text { gec }
\end{array} \\
& \text { Vecter has inp }
\end{aligned}
$$

$\begin{aligned} & \text { - it pointe in the } \\ & \text { diection of the }\end{aligned}$
t locth
$\neg\left(g_{x}\right)+\left(g_{y}\right)$

Robets operet::-: \begin{tabular}{|c|c|}
\hline-1 \& 0

\hline 0 \& 1

\hline

\quad

\hline 0 \& -1

\hline 1 \& 0

\hline
\end{tabular}

Sobel opectre:-

-1	-2	-1				
0	0	0				
1	2	1	\quad	-1	0	1
:---:	:---:	:---:				
-2	0	2				
-1	0	1				

$$
\begin{aligned}
& f\left(x^{-1}, y^{-1}\right) \\
& \begin{array}{|l|l|l|}
\hline z_{1} & z_{2} & 23 \\
\hline z_{4} & 25 & 26 \\
\hline z_{1} & z_{8} & 29 \\
\hline
\end{array} \quad f(x+1, y+1)
\end{aligned}
$$

I Sodec derews

$$
g_{x}=(28-25)
$$

$$
k g_{y}=\left(z_{6}-z_{8}\right)
$$

Robects peopoped $g_{x}=\left(z_{a}-z_{s}\right) \& g_{y}=\left(z_{g}-z_{b}\right)$

$$
\begin{aligned}
\therefore M(x, y) & =\sqrt{\left(z_{a}-2 b\right)^{2}+\left(z_{8}-2_{6}\right)^{2}} \\
& \approx\left(z_{a}-25\right)+\left(z_{8}-z_{b}\right)
\end{aligned}
$$

\rightarrow Roberts cess-gudit opeetu.

Filfecing in Frg. domain:
Functions of Two Valiables.
$\delta(t):$
1Di

$$
\delta(t)= \begin{cases}1 & \text { if } t=0 \\ 0 & \text { elsubees }\end{cases}
$$

2D:

$$
\begin{aligned}
& \delta(x, y)= \begin{cases}1 & \text { if } x=y=0 \\
0 & \text { elsewhe, }\end{cases} \\
& \delta\left(x-x_{0}, y-y_{0}\right)= \begin{cases}1 & x=x_{0} \times y=y_{0} \\
0 & \text { elsetue. }\end{cases}
\end{aligned}
$$

FT:

ana
DFT: $F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{v y}{N}\right)}$
2D-DFT:-

$$
\begin{aligned}
& x \rightarrow 0,1,2 \ldots M-1 \\
& y \rightarrow 0,1,2 \ldots n-1
\end{aligned}
$$

Peopectics of 2D-DFT

$$
\begin{aligned}
& x \rightarrow 0,1,2 \ldots, \ldots-1 \\
& y \rightarrow 0,1,2 \ldots N-1
\end{aligned}
$$

(1) Relationstips b/n spatial \& for intevals:

Contitime $f(t, z)$ is scopled to $k_{m} \neq(x, y) \rightarrow M \times N$ samples Let $\Delta T \& \Delta z \rightarrow$ separations b/n samples. $_{42}$

Then the separations b/n the corresponding discrete fry-domain (10) variables are given by

$$
\Delta u=\frac{1}{m \Delta T} \quad \& \quad \Delta v=\frac{1}{N \Delta Z}
$$

(2) Jranlation \& Rotation:
shift the sivan of $\begin{gathered}D F T \\ \left(u_{0}, u_{0}\right)\end{gathered}$

$$
\begin{aligned}
&\text { Jranlation \& Rotation }] \\
& f(x, y) e^{j 2 \pi\left(\frac{u_{0} x}{n}+\frac{v_{0} y}{N}\right)}\left.\longleftrightarrow F\left(u-u_{0}\right)\left(v-u_{0}\right)\right] \\
& \text { 乡 } f\left(x-x_{0}, y-y_{0}\right) \longrightarrow F(u, v) e^{-j 2 \pi\left(\frac{x_{0} u}{n}+\frac{y_{0} u}{N}\right)} \\
& \longrightarrow \text { Translation Property. }
\end{aligned}
$$

Rotation:-

$$
x=r \cos \theta \quad u=\omega \cos \phi
$$

If $y=r \sin \theta \quad x=\omega \sin \phi \quad$ then

$$
f(r, \theta+\infty) \longleftrightarrow F(\omega, \psi+0)
$$

Rotating $f(x, y)$ by an angle oo \rightarrow rotates $F(u, v)$ by the same angle.
(3) Periodicity:

$$
\begin{aligned}
& F(u, v)=F\left(u+k_{1} M, v\right)=F\left(u, v+\frac{k N}{2}\right) \\
& =F\left(u+k_{1} m_{2} u+k_{2} N\right) \\
& f(x, y)=f\left(x+k_{1}^{\prime} M, y\right)=f^{2}\left(x, y+k_{2} N\right)=f\left(x+k_{1} m, y+k N\right) \\
& k_{1} k_{2} \rightarrow \text { inge. } \\
& \text { O } \frac{n}{2} \quad m-1 \\
& f(x) e^{j 2 \pi\left(\frac{u_{0} x}{m}\right)} \longleftrightarrow F\left(u-u_{0}\right) \\
& \text { Let } M / 2=u_{0} \\
& f(x) e^{j \pi \frac{N}{2} x / \alpha} \underset{x}{\rightleftarrows} F(u-M / 2) \\
& f(x)(-1)^{x} \longleftrightarrow F(u-M / 2)
\end{aligned}
$$

Multiplying $f(x)$ sig $(-1)^{x}$ shifts $F(0)$ to center the interne $(M / 2)$ 0 Lo my

Fos $2 D$ DFT,

$$
f(x, y)(-1)^{x+y} \longrightarrow F\left(u-\frac{m}{2}, v-\frac{n}{2}\right) .
$$

(4) Convolution:
(5) Correlation:-
(6) Scoling:-

$$
a \cdot f(x, y) \longleftrightarrow a \cdot F(u, v)
$$

$$
f(a x, b y) \longleftrightarrow \frac{1}{\mid a b)} F\left(\frac{u}{a}, \frac{v}{b}\right)
$$

(6) Symmetty: $\operatorname{DFT}\left\{f^{*}(m, n)\right\}=F^{*}(-k,-l)$

$$
F(k, l)=F^{*}(-k,-l)
$$

(7) Anervit:-

$$
y_{1}^{\prime-}(x, y)+b g(x, y) \longleftrightarrow a F(u, v)+b \phi(u, v)
$$

Steps fir filtering in Trap. domain..

Steps:-
(1) Multiply the input image by (-1) $\begin{gathered}x+y \\ \text { to }\end{gathered}$ center the transform.
(2) Compute $F(u, v)$, the AFT of the image
(3) Multiply $F(u, v)$ by a fitter fo $H(u, v)$
(4) Compute the IDFT of the result in Step (3).
(5) Obtain the real pact of the result in steg(4)
(6) multiply the result by $(-1)^{x+y}$

Preplocising \rightarrow zero padding.
post plucerory \rightarrow cropping.
$H(u, v)$
$h(x, y) \longrightarrow$ Impulse response of $H(x, v)$
\because all quantities in a discrecte implementation of $h(x, y) \longleftrightarrow H(u, v)$ are finite, such filtess baee also colled - FIR (frote impube esponse)
There are only - linear spatial fitteis consideut,
Some basic filts:- (1) $H(u, v)= \begin{cases}0 & \text { if }(u, v)=\left(M_{2}, v / 2\right) \\ 1 & \text { otheare }\end{cases}$
It is colled Motch filter - It is a coostont fin with a hole (notch) at the srigin.
Low fropencies in FT ace suspomible for the genceal oray-level appearance of inage ovee smootn aeeas. high forgrencies in FT are responsible for details
edges \& noise such as edges \& noine
Filtee that attencatis high frequencies - LPF
-
(1) Ideal LPF $\quad H(u, v)= \begin{cases}1 & \text { if } D(u, v) \leqslant D_{0} \\ 0 & \text { if } D(u, v)>D_{0}\end{cases}$
$D_{0} \rightarrow$ twe constent
$D(u, v) \rightarrow$ distence $b / n \quad f t(u, v)$ \& centec 8 fov. ritangle.

$$
\begin{aligned}
& \quad D(u, v) \rightarrow \text { dishance } b / n \quad p t(u, v) \text { os } \\
& H(u, v)=\left\{(u-p / 2)^{2}+\left(v-\frac{Q}{2}\right)^{2}\right\}^{1 / 2} \\
& H
\end{aligned}
$$

Butterworth LPF

$$
H(u, v)=\frac{1}{1+\left[D(u, v) / D_{0}\right]^{2 n} \quad \text { ordee } \rightarrow n}
$$

(3) Caussian LPF

$$
H(u, v)=e^{-D^{2}(u, v) / 2 \sigma^{2}}
$$

$H(u)$ if $\sigma=D_{0}$ then $H(u, v)=e^{-D^{2}(u, v) / 2 D_{0}{ }^{2}}$

$$
\text { If } D_{0}=D(u, v) \longrightarrow \underset{\substack{\left.\max ^{\left(D_{0} \text { vant }\right)} \mathbf{0 . 6}\right)}}{0.67}
$$

(Downt)

LPF \rightarrow Printing \& pultishing industery.
Image Shoepering using Fy doman fitter

$$
H_{H \rho}(u, v)=1-H_{L \rho}(u, v)
$$

(1) Ideal HPF

$$
H(u, v)= \begin{cases}0 & \text { if } D(u, v) \leqslant D_{0} \\ 1 & \text { if } D(u, v)>D_{0}\end{cases}
$$

(2) Butteworth HPF

$$
\text { worth HPF } \frac{1}{1+\left[\left(D_{0} / D(u, v)\right]^{2 n}\right.}
$$

(9) Gaussion HPF.

$$
H(u, v)=1-e^{-D^{2}(u, v) / 2 D_{0}^{2}}
$$

Laplacian in the frap domain
Laplacian can be implemented in freq. domain Using the filter

$$
\begin{aligned}
& \text { filter } \begin{aligned}
H(u, v) & =-4 \pi^{2}\left(u^{2}+v^{2}\right) \\
\text { of } H(u, v) & =-4 \pi^{2}\left[\left(u-\frac{p}{2}\right)^{2}+\left(v-\frac{Q}{2}\right)^{2}\right] \\
& =-4 \pi^{2}\left[D^{2}(u, v)\right] \quad D(u, v) \rightarrow \text { distance f?. }
\end{aligned}
\end{aligned}
$$

Laplacian inge $\nabla^{2} f(x, y)=F^{-1}(H(u, v) \cdot F(u, v)]$

$$
\begin{aligned}
& g(x, y)= f(x, y)+c \nabla^{2} f(x, y) \\
& C=-1 \text { as H(u,v) is negative } \\
& g(x, y)=F^{-1}[F(x, y)-H(u, v) . F(u, v)\} \\
&=F^{-1}[\{1-H(u, v)\} F(u, v)] \\
&=F^{-1}\left\{\left\{1-4 \pi^{2} D^{2}(u, v)\right\} F(u, v)\right\}
\end{aligned}
$$

Unshap Masking, Highboost filtering \& High fy. emphasis filtering

$$
\begin{aligned}
& g(x, y)=F^{-1}\left\{\left[1+k *\left[1-H_{L}(u, v)\right]\right] F(u, v)\right\} \\
& \therefore g(x, y)=F^{-1}\{\underbrace{\left[1+k * H_{1}(u, v)\right]}] F(u, v)\}
\end{aligned}
$$

High for Emphars fittec:- -
(8)
(hece $k_{1}>0$ gives conteols to the
\& $k_{2} \geqslant 0$ conteds the contibution 8 high orisin
 is supeciar to the result

Homomosphic 承Hecing, 100 , 8^{05}
Let $f(x, y)=i(x, y) \operatorname{sr}(x, y)$
illumination-reffection ce model.
But $F\{f(x, y)\} \neq F\{i(x, y)\}$. $F\{r(x, y)\}$

$$
\begin{aligned}
& z(x, y)=\ln \{f(x, y)\}=\ln \{i(x, y) \cdot r(x, y)\}=\ln \{i(x, y)\} \\
& \text { Taley } \ln \text { on b.S. } \\
& F\{z(u, v)\}=F\{\ln \{f(u, u)\}\}=F_{i}(u, v)+F_{r}(u, v) \\
& Z(u, v)=F_{i}(u, v)+F_{2}(u, v)
\end{aligned}
$$

We con fisee $Z(u, v)$ usis a filtee $H(u, v)$, so that

$$
\begin{aligned}
\text { con fitere } & =H(u, v) \cdot Z(u, v) \\
& =H(u, v) F_{i}(u, v)+H(u, v) F_{r}(u, v) \\
& S(x, y)
\end{aligned}=F^{-1}\left\{\Phi_{99}(u, v)\right\}
$$

$$
\begin{aligned}
8(x, y)= & F^{-1}\left\{H(u, v) F_{i}(u, v)\right\} \\
& +F^{-1}\left\{H(u, v) F_{r}(u, v)\right\} \\
i^{\prime}(x, y)= & F^{-1}\left\{H(u, v) F_{i}(u, v)\right\} \\
\Omega^{\prime}(x, y)= & F^{-1}\left\{H(u, v) F_{r}(u, v)\right\} \\
S(x, y)= & i^{\prime}(x, y)+r^{\prime}(x, y) \\
g(x, y)= & e^{s(x, y)}=e^{i(x, y)}, e^{r^{\prime}(x, y)} \\
= & i_{0}^{\prime}(x, y) r_{0}(x, y) .
\end{aligned}
$$

Hecuminato \& refleation conponet of \% pecased imge.

$$
f(x, y) \Rightarrow \ln \Rightarrow D F T \Rightarrow H(x, 0) \Rightarrow D F T^{-1} \Rightarrow \exp \Rightarrow g(x, y)
$$

Histogram equalization
(1) 3-bit mage $(L=.8)$: of size 64×64 pixels ($M N=4096$) has intensity distribution shown below in table 3.1, where intensity leirels are integers in the range. $[0, L-1]=[0 ; 7]$

r_{K}	n_{K}	$\operatorname{pr}\left(r_{K}\right)=n K / m N$	
$r_{0}=0$	790	$0.19=790 / 4096$	
$r_{1}=1$	1023	0.25	
$r_{2}=2$	850	0.21	
$r_{3}=3$	656	0.16	
$r_{4}=4$	329	0.08	$L=8$
$r_{5}=5$	245	0.06	$M N=4096$
$r_{6}=6$	122	0.03	M
$r_{7}=7$	81	0.02	

$$
\begin{aligned}
& S_{k}=T\left(r_{k}\right)=(L-1) \sum_{j=0}^{k} P_{r}\left(r_{j}\right) \\
& S_{0}=T\left(r_{0}\right)=7 \sum_{j=0}^{0} P_{r}\left(r_{j}\right)=7 p_{r}\left(r_{0}\right)=7 \times 0.19 \\
&=1.3311 \\
& S_{1}=T\left(r_{1}\right)=7 \sum_{j=0}^{1} \operatorname{Pr}\left(r_{j}\right)=7 \operatorname{Pr}\left(r_{0}\right)+7 p_{r}\left(r_{1}\right) \\
&=7 \times 0.19+7 \times 0.25=3.08
\end{aligned}
$$

Like this solving
we get we get

$$
\begin{aligned}
& \text { we get } \quad S_{3}=5.67,54=6.23, S_{5}=6.65, \\
& S_{2}=4.55, \quad S_{6}=6.86 \quad \text { \& } S_{7}=7.00 \\
& S_{5}=6.65=6.23 \rightarrow 6 \\
& S_{0}=1.33 \rightarrow 1 \quad S_{4}=6 . S_{5}=6.65 \rightarrow 7 \\
& S_{1}=3.08 \rightarrow 3 \quad S_{6}=6.86 \rightarrow 7 \\
& S_{2}=4.55 \rightarrow 5 \quad S_{7}=7.00 \rightarrow 7 \\
& S_{3}=5.67 \rightarrow 6 \quad
\end{aligned}
$$

$r_{\theta=0} \operatorname{mag}^{2} \sin _{0}=$
$r_{0}=0$ is mapped to $s_{0}=1 \quad \therefore 790$ pinely inhistoaray

$$
\begin{aligned}
& r_{1}=1 \quad \cdots \quad s_{1}=3 \quad \therefore 1023 \\
& \text { equalisedimar } \\
& r_{e}=2 \\
& \cdots \quad S_{2}=5 \\
& \therefore \quad 850 \\
& r_{3}+r_{4} \cdots 906 \therefore(656+329)=985 \\
& \text { ris } r_{5, ~}^{56}, r_{7} \ldots \quad \text { to } 7 \quad \therefore \quad(245+122+81)=448
\end{aligned}
$$

$$
\begin{array}{ll}
S_{k} & i_{k} \\
1 & -790 \longrightarrow \\
3 & P_{S}\left(S_{k}\right) \\
5 & -1020 \longrightarrow 790 / 4096=0.19 \\
5-850 & \longrightarrow 0.25 \\
7-985 & =0.21 \\
7-448 & 0.24 \\
& 0.109
\end{array}
$$

Histogram matching (specification)

* Histogram equalization automatically determines a transformation function which produce an output image that has a uniform histogram.
* when automatic enhancement is desired, this is a good approach "O the results' from this technique are predictable to implement. \& the method is simple to imp
* for some application, this might it be the best approach en base en hancement
* for some times, we need to specify the Shape of the histogram that we want to process the image
* The method used to genelate a processed image that has a specified histogram is called histog ram matching or histogram specification
* Histogram specification is a point operation that maps input image $f(x, y)$ into an output image $g(x, y)$ with a user specified histogram
* uses. * It improves contrast \& brightness of Images.
* It is a pre-processing step in comparison of images.

Let us recall histogram equalization
$P_{r}(r) \rightarrow p d f$ of greylevel r 'of input image
$P_{z}(z) \rightarrow$ pdf of grey level ' z ' of specified image
$P_{S}(s) \rightarrow p d f$ of grey levels is of output mace

The Transformation is

* Histogram equalization of input image

$$
S=T(r)=\left[\left.\begin{array}{l}
(-1) \tag{1}\\
(2-1)
\end{array}\right|_{0} ^{r} \operatorname{Pr}(r) d r\right.
$$

* Histogram equalization of specified image

$$
\begin{equation*}
G(z)=-z-1]]_{(L-1)}^{z} P_{z}(z) d z \tag{2}
\end{equation*}
$$

Then

$$
\begin{align*}
& G(z)=S=T(\gamma) \\
& \Rightarrow z=G^{-1}[S]=G^{-1}[T(\gamma)]
\end{align*}
$$

+ Assuming that G^{-1} exist, then we can map ip grey levels ' γ ' to o/p grey levels 's'.
procedure for histogram specification
Step 1:- obtain the transformation $T(r)$ by doing histogram equalization of ip image

$$
S=T(r) x_{1}^{(1-1)} \int_{0}^{r} P_{r}(r) d r
$$

Step 2: Obtain the Transformation $G_{n}(z)$ by doing $=$ histogram equalization of specified mage

$$
G(z)=\left(\Omega-1 \int_{0}^{z} P_{z}(z) d z\right.
$$

Step ii. Equate $G(z)=S=T(r)$
Step 4: Obtain inverse transformation function

$$
\begin{aligned}
& G^{-1} \\
& Z=G^{-1}[s]=G^{-1}[T(\gamma)]
\end{aligned}
$$

Step 5:- Obtains the output image by applying inverse transformation function to all pixels of input image.
(1) Assume an made having given grey level $\operatorname{pdf} \operatorname{Pr}(r)$. Apply his tog ram specification with given desired pol function $p_{z}(z)$

$$
\begin{aligned}
& \text { given below } \\
& P_{Y}(r)=\left\{\begin{array}{cl}
\frac{-2 r+1}{(L-1)} ; & 0 \leq r \leq L^{-1} \\
0 ; & \text { other wise }
\end{array}\right. \\
& \xrightarrow[0]{\substack{\operatorname{Pr}(r) \\
\text { dis a } \\
\operatorname{Pdf} \text { of } r}}
\end{aligned}
$$

Apply histogram specification with $L+z$ the desired pelf function $p z(z)$ given in fig (b)

1) Obtain transformation function $T(Y)$ by doing histogram equalization of Input image

$$
\begin{aligned}
& S=T(r)=\int_{0}^{r} P r(r) d r=\int_{0}^{r}(-2 r+2) d r \\
& =\left[-r^{2}+2 r\right]_{0}^{r} \\
& =-r^{2}+2 r \text {. }
\end{aligned}
$$

2) Obtain transformation function $G(z)$

$$
\left.\begin{array}{rl}
G(z)= & \int_{0}^{z} P_{z}(z) d z
\end{array}\right)=\int_{0}^{z} 2 z d z
$$

(3)

$$
\text { Equate } \begin{aligned}
S & =T(r) \\
=r^{2}+2 r & =z^{2}
\end{aligned}
$$

(4) Obtain inverse transformation G^{-1}

$$
\begin{aligned}
& z=G^{+1}[T(r)] \\
& z=\sqrt{-r^{2}+2 r}
\end{aligned}
$$

Discrete formulation
Histogram equalization of ils image

$$
\begin{aligned}
& S_{K}=T\left(r_{k}\right)=\sum_{j=0}^{k} P_{r}\left(r_{j}\right), K=0, \ldots L-1 \\
& S_{k}=(L-1) \sum_{j=0}^{K} \frac{n_{j}}{n} \quad k=\frac{(L-1)}{n=m N} \sum_{j=0}^{k} n_{j}
\end{aligned}
$$

$n=$ total no of pixels in ils Image $n_{j}=$ no of pixels having level

* Hansformation fun G(z) can der obtained wing eq (2) giten $P_{z}(z)$
(2)

$$
\begin{aligned}
& P_{\gamma}(r)= \begin{cases}\frac{2 r}{(L-1)^{2} ;} ; & 0 \leqslant r \leqslant L-1 \\
0 ; & \text { othel values of } r\end{cases} \\
& P_{z}(z)= \begin{cases}\frac{3 z^{2}}{(L-1)^{3} ;}, & 0 \leqslant z \leqslant(L-1) \\
0 ; & \text { other values of } z\end{cases}
\end{aligned}
$$

Find the Transformation funt
(i)

$$
\begin{aligned}
S=T(\gamma) & =(L-1) \int_{0}^{\gamma} p_{\gamma}(\omega) d \omega=(L-1) \int_{0}^{\gamma} \frac{2 \omega}{(L-1)^{2}} d \omega \\
& =\frac{2}{(L-1)} \int_{0}^{\gamma} \omega d \omega=\frac{\gamma^{2}}{(L-1)}
\end{aligned}
$$

(2) $G(z)=(L-1) \int_{0}^{2} P_{2}(b) d \omega=\frac{3}{(L-1)^{2}} \int_{0}^{2} \omega^{2} d \omega$

$$
=\frac{z^{3}}{(L-1)^{2}}
$$

(3)

$$
\begin{aligned}
& G(z)=S \\
& \frac{z^{3}}{(L-1)^{2}}=S \\
& \therefore \quad z=\left[(L-1)^{2} S\right]^{1 / 3}
\end{aligned}
$$

If we multiply every histogram equalized pixel by $(L-1)^{2}$ \& raise the product to the power by $1 / 3$, the result will de an image whose intensities z hare the PDF $P_{2}(z)=\frac{3 z^{2}}{(L-1)^{2}}$ in $(0, L-1)$

* $\sin \varphi \quad s=\frac{r^{2}}{(z-1)}$

$$
\begin{aligned}
& z=\left[(L-1)^{2} \cdot \frac{\gamma^{2}}{(L-1)}\right] \\
& z=\left[(L-1) r^{2}\right]^{1 / 3}
\end{aligned}
$$

* squaring the value of each pixel in the original image \& mutliplying the result by (L-1) \& raising the product to the power $(1 / 3)$ will yield an image whose intensity levels z have the specified PDF.

Histogram equalization of specified image

$$
V q=G\left(z_{q}\right)=(1-1) \sum_{i=0}^{q} p_{z}\left(z_{i}\right), q=0, \cdots L-1 \text {; }
$$

equate

$$
G\left(z_{q}\right)=S_{k}=T\left(\gamma_{k}\right)
$$

inverse Transformation

$$
z_{q}=G^{-1}\left[S_{K}\right]=G^{-1}\left[T\left(r_{K}\right)\right]
$$

this thoperation gites a value of z for each value of s (mapping to s to z] procedure for Histogram specification
Step 1: Equalize input image histogram [SK]
2:. Equalize specified image histogram [Vg]
3: For $\min q\left[V_{q}-S\right] \geqslant 0$ find corresponding

$$
v^{*} 4 P
$$

4:- Map input pixels to alp pixels to get output Image.
(1) Apply histogram specification on image in fig below

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
2 & 3 & 3 & 2 \\
0 & 1 & 0 & 1 \\
1 & 3 & 2 & 0
\end{array}\right]
$$

having

$$
\begin{aligned}
& g r_{i}=z_{i}=0,1,2,3 \\
& P_{r}\left(r_{i}\right)=0.25 \text { for } I=0,1,2,3 \\
& P_{z}\left(z_{0}\right)=0, \quad p_{z}\left(z_{1}\right)=0.5 \\
& P_{z}\left(z_{2}\right)=0.5 \quad P_{z}\left(z_{3}\right)=0
\end{aligned}
$$

1: Equalize input image histogram.

2:. Equalize specified image histogram.

$$
S_{k}=T\left(r_{k}\right)
$$

$$
=\sum_{j=0}^{1 n_{j}} \frac{n^{\prime}}{n}
$$

z_{q}	0	1	2	3
$\operatorname{giv}_{i_{u}}$				
$p_{2}\left(z_{0}\right)$				
$p_{2}(z j)$				
$p_{z}\left(z_{q}\right)$	0	0.5	0.5	0
v_{q}	0	0.5	1	1

3:- Find minimum value of ' q ' such that

$$
\begin{aligned}
& \text { Find minimum value of } \\
& (\mathrm{Vq}-\mathrm{s}) \geqslant 0 \text {. first } 3 \text { columns are } \\
& \text { next } 3 \text { columns are }
\end{aligned}
$$

filled by step 1, next 3 columns are filled by step 2. In this step, last 2 column's are filled by $\frac{6011}{2}$ procedure

r_{k}	$P_{r}\left(r_{k}\right)$	S_{k}	z_{q}	$P_{z}\left(z_{q}\right)$	V_{q}	v^{*}	p
0	0.25	0.25	0	0	0	0.5	1
1	0.25	0.5	1	0.5	0.5	0.5	1
2	0.25	0.75	2	0.5	1	1	2
3	0.25	1	3	0	1	1	2

(a) $q=0, k=0 \quad v_{q}-s_{k} .(0-0.25) \quad v_{0}^{*}=v_{q} \quad P_{0}=z_{q}$

$$
\begin{aligned}
& q=0, k=0 \quad\left(V_{0}-S_{0}\right)=(0-0.25)=-0.25 \geq 0 \Rightarrow N 0 \\
& \text { increase } q \\
& q=1, k=0 \quad\left(V_{1}-S_{0}\right)=(0.5-0.25)=0.25 \geq 0 \Rightarrow \text { yes } \\
& \therefore V_{0}^{*}=V_{q}=V_{1}=0.5 \\
& P_{0}=z_{q}=z_{1}=1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& q=1, k=1 \quad\left(V_{1}-s_{1}\right)=(0.5-0.5)=0 \geqslant 0 \text { Hes } \\
& \therefore V_{1}^{*}=V_{1}=0.5 \\
& 00 \quad P_{0}=Z_{1}=1
\end{aligned}
$$

(c)

$$
\begin{array}{r}
q=1, k=2\left(v_{1}-s_{2}\right)=(0.75) \geqslant-0.75 \geqslant 0 \Rightarrow \text { No } \\
\begin{aligned}
\text { incwase }
\end{aligned} \\
q=2, k=2\left(v_{2}-s_{2}\right)=(1-0.75) \geqslant 0 \Rightarrow \text { yes } \\
=0.25 \\
\therefore v_{2}^{*}=V_{2}=1 \\
\therefore P_{2}=z_{2}=2
\end{array} ~ l i
$$

incuase q
(d) $q=2, k=3$

$$
\begin{aligned}
&\left(V_{2}-s_{3}\right)=(1-0.75)=0.4 \geq 0 \text { yes } \Rightarrow 1 \\
& V_{3}^{*}=V_{2}=1 \\
& P_{3}=Z_{2}=2
\end{aligned}
$$

map ilplerels to o/p lerels value
4

γk	0	1	2	3
p	1	1	2	2

(5) Map ilp pinels to new values to get he wimeng

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
2 & 3 & 3 & 2 \\
0 & 1 & 0 & 1 \\
1 & 3 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 2 \\
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 1 \\
g(x, y)
\end{array}\right]
$$

* Let $p r(r) \rightarrow p d f$ of grey level ' r ' of il Image
$p_{ \pm}(z) \rightarrow p d f$ of grey level ' z ' of specified Inure
$r \& z \Rightarrow$ intensity levels of ils \& op images resp.
* Transformation of particular importance in image proussing is given by

$$
\begin{equation*}
S=T(\gamma)=(L-1) \int_{0}^{\gamma} \operatorname{Pr}(\omega) d \omega \tag{1}
\end{equation*}
$$

(continuous version of histogram equalizn)

* Let us define a random Variable 'z' with the property

$$
\begin{align*}
& G(z)=(L-1) \int_{z}^{z} P_{z}(t) d t=5 \tag{2}\\
& t \rightarrow \text { dummy variable came as }
\end{align*}
$$

$$
t \rightarrow \text { dummy valiable }
$$

* from eq (1) + (2)

$$
G(z)=T(r)
$$

$0_{0} 0$ ' I ' mut satisfy the condition

$$
\begin{equation*}
z=G^{-1}[T(r)]=G^{-1}(S) . \tag{3}
\end{equation*}
$$

* Once $\operatorname{Pr}(r)$ has been estimated from ip image, then $T(r)$ can be obtained by eq (1)

Consider 64×64 hypothetical image shown in previous example whore histogramis shown in below figs It is desisted to transform this histogram so that it will have the values specified in the second column of. table 3.2 \& fig(6) shows a sketch of this histogram.

$\frac{r_{k}}{r_{0}=0}$	$\frac{n k}{}$		$p r(r k)$
$r_{1}=1$	1023	0.19	
$r_{2}=2$	850	0.25	
$r_{3}=3$	656	0.16	
$r_{4}=4$	329	0.08	
$r_{5}=5$	245	0.06	
$r_{6}=6$	122	0.03	
$r_{7}=7$	81	0.02	

I to obtain histogram-equalized value

$$
\begin{array}{llll}
s_{0}=1 & s_{2}=5 & s_{4}=6 & s_{6}=7 \\
s_{1}=3 & s_{3}=6 & s_{5}=7 & s_{3}=7
\end{array}
$$

II compute all the values of the transformatia

$$
\begin{aligned}
& \text { Gun } G \text { using } \\
& G\left(z_{q}\right)=(L-1) \sum_{i=0}^{q} P_{z}\left(z_{i}\right) \\
& G\left(z_{0}\right)=7 \sum_{j=0}^{0} P_{z}\left(z_{i}\right)= \\
&=7 \times P_{z}\left(z_{0}\right)=0.000 \\
& G\left(z_{1}\right)=7 \sum_{i=0}^{1} P_{z}\left(z_{j}\right)=7\left[P\left(z_{0}\right)\right. \\
&\left.+P\left(z_{1}\right)\right]=0.00
\end{aligned}
$$

114

$$
\begin{array}{ll}
G\left(z_{2}\right)=0.00 & G\left(z_{3}\right)=1.05 \\
G\left(z_{4}\right)=2.45 & G\left(z_{5}\right)=4.55 \\
G\left(z_{6}\right)=5.95 & G\left(z_{7}\right)=7.00
\end{array}
$$

* these fractional values are conseeted into integer

$$
\begin{aligned}
& G\left(z_{0}\right)=0.00 \rightarrow 0 \quad G(z \\
& G\left(z_{1}\right)=0.00 \rightarrow 0 \quad G(z) \\
& G\left(z_{2}\right)=0.00 \rightarrow 0 \\
& G\left(z_{3}\right)=1.05 \rightarrow 1 \\
&
\end{aligned}
$$

$$
G\left(z_{4}\right)=2.45 \rightarrow 2
$$

$$
G(25)=4.55 \rightarrow 5
$$

$$
G(z 6)=5.95 \rightarrow 6
$$

$$
G(27)=7.00 \rightarrow 7
$$

z_{q}	$G\left(z_{q}\right)$
$z_{0}=0$	0
$z_{1}=1$	0
$z_{2}=2$	0
$z_{3}=3$	1
$z_{4}=4$	2
$z_{5}=5$	5
$z_{6}=6$	6
$z_{9}=7$	7

III We find smallest value of z_{q} so that the value $G\left(z_{q}\right)$ is closest to S_{K}.
eg. () $S_{0}=1$ \& we see $G\left(z_{3}\right)=1$
which is perfect match in this care \therefore we have corres rondenc $50 \rightarrow \mathrm{Z}_{3}$
1.e. evely pixel whose value is 1 in the histogram equalized image would map to a pixel valued 3 (in the corresponding location) in the histogram-srecitied ware

s_{k}	$\rightarrow 2 q$
1	$\rightarrow 3$
3	$\rightarrow 4$
5	$\rightarrow 5$
6	$\rightarrow 6$
7	$\rightarrow 8$

$$
\begin{aligned}
& S_{1}=3 \quad G\left(z_{4}\right)=2 \\
& \therefore S_{1} \rightarrow z_{4}
\end{aligned}
$$

* To compute $p z\left(z_{q}\right)$
$s=1$ maps to $z=3$
there ale 790 pixels in the histogram, - equalize image with a value of 1 .

$$
\begin{aligned}
& 00 \mathrm{Pz}\left(z_{3}\right)=\frac{790}{4096}=0.19 \\
& S=3 \rightarrow z=4 \\
& \therefore P_{2}\left(z_{4}\right)=\frac{1020}{4096} \\
& =0.25 \\
& S=6 \rightarrow z=6 \\
& P_{2}\left(z_{6}\right)=\frac{985}{4096} \\
& =0.24 \\
& S=5 \rightarrow z=5 \\
& P_{2}(25)=\frac{850}{4096} \\
& =0.21 \\
& s=7 \rightarrow z=2 \\
& P_{2}\left(z_{7}\right)=\frac{448}{4096} \\
& 20.109 \\
& 20.11 \\
& Z_{q}
\end{aligned}
$$

Local histogram processing

* The histogram process discussed before [histogram equilization 4 histograms specialization] ale global
* In this approach, pixels are modified by a transformation function based on the intensity distribution of an entire image.
Although
* .This method is suitable for overall enhancement, there are some cases in which it is necessary to enhance details over small areas in an Image
* The no of pixels in these areas may have negligible influence on the computation of a global transformation whose shape doesnot necessalily guarantee the desired local enhancement
$*$ The solution is to devise transformation, functions based on the intensity distribution in a neighborhood of every pixel in the image
* The procedure is to define a neighborhood and move its center from pixel to pixel
* At each location, the histogram equalization or histogram specification transformation function is obtained.
* This fun is then used to map the intensity of the pixel centered in the neighborhood
* The centre of the neighborhood region is then moved to an adjacent pixel location \& the procedure is repeated * © only one row or column of the neighborhood changes duling a pinel-to-pinel translation of the neighborhood, updating the histogram obtained in previous location with the new data introduced at each motion step is possibly
* this approach has

Advantages Over repuade repeated by computing the histogram of all pixels in the neighborhood legion each time the region is moved one pixel location

* one more approach used sometimes to reduce computation is to utilize non-overlapping regions but this method usually produces an undesirable "blocky" effect

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3.

Using Histogram statistics for image
En hancement 1 .

* Statistics obtained directly from an Image histogram can be used for in age enhancemers.
* Let ' r ' denote \Rightarrow discrete random valiable representing intensity values in the range $[0, L-1]$
$P\left(r_{i}\right) \Rightarrow$ the normalized histogram component corresponding to value r_{i}
conan estimate of Probability that intensity r_{i} occurs in the image from which the histogram was obtained
- $n^{\text {th }}$ moment of ' r ' about its mean is defined as

$$
\begin{equation*}
\mu_{n}(r)=\sum_{i=0}^{L-1}\left(r_{i}-m\right)^{n} p\left(r_{i}\right) \tag{1}
\end{equation*}
$$

Where
$m=$ mean value (average intensity of pixels in

$$
\begin{equation*}
m=\sum_{i=0}^{L-1} r_{i} p\left(r_{i}\right) \tag{2}
\end{equation*}
$$ the (mage)

* The second moment is particularly important $\&$ is defined as

$$
\mu_{2}(r): \sum_{i=0}^{k=1}\left(r_{i}-m\right)^{2} p\left(r_{i}\right) \rightarrow 3
$$

eq (3) is recognized as intensity valiance denoted by σ^{2}
mean \rightarrow measure of average intensity in an Image
valiance \Rightarrow measure of constrast Gored deviation
steel. der: squatryout in an image. eq valiant

* Once the histogram is computed for an image, all the moments are easily computed using eq (1)
* When mean $\&$ variance ale computed directly from the sample values, without computing the histogram [common pratic] then these estimates are called as Sample mean 4 Sample valiance

$$
\begin{align*}
m & =\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{4=0}^{N-1} f(x, y) \rightarrow(4) \\
\sigma^{2} & =\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}[f(x, y)-m]^{2}-
\end{align*}
$$

* sometimes instead of $M \mathrm{~N}$. even MN-1 can be used fo is done to (unbiased estimate of variance
of consider 2-6it image size 5×5

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 2 \\
1 & 2 & 3 & 0 & 1 \\
3 & 3 & 2 & 2 & 0 \\
2 & 3 & 1 & 0 & 0 \\
1 & 1 & 3 & 2 & 2
\end{array}\right]
$$

the pixels are rep resented by 2 -bits

* pixels are represented by 2 bits

$$
0 \quad L=
$$

* The intensity levels are in the rang $[0, \ldots]$

* $M N=$
* histogram has the components $P\left(r_{i}\right) \Rightarrow$ compute
* Compute average value of intensities in the image
* samplervalue *?
* Uses of mean \& variance for enhancement purpose
* The global mean $\&$ variance are computed \& ale useful for grots adjustments in overall intensity \& contrast.
* We of these parameters in local enhancement
* Local mean 4 Valiance are used as basis for making changes that depend on image chavactestics in a neighbourhood about each pixel in an Image
$* \operatorname{Let}(x, y) \Rightarrow$ co-ordinary of any pixel in a give image
$S_{x, y} \Rightarrow$ neighborhood (Subimage) of specified size, centered on $(x, 4)$.
* mean value of the pixels in this neighborhood is

$$
m_{S_{x y}}=\sum_{i=0}^{l-1} r_{i} P_{s_{x y}}\left(r_{i}\right)
$$

$P_{\rho x y} \Rightarrow$ his togram of pixels in region Sty.

* variance of pixels in the neighborhood

$$
\begin{equation*}
\sigma^{2} s_{x_{y}}=\sum_{i=0}^{L-1}\left(r_{i}-m_{\rho_{x_{y}}}\right)^{2} \rho \rho_{x_{y}}\left(r_{i}\right) \tag{48}
\end{equation*}
$$

* Local mean \Rightarrow is a measure of avg intensity in neighbor hood soy
* Local valiance \Rightarrow is a measure of intensity constrast in the neighborhood
Arithmetic | Logic operations
 Multi

$$
=
$$ image. operation

* In multi image operation, grey levels of 20 r more input images are mapped to a single op image as shown in above fig
* $g(x, 4)=O P\left[f_{1}(x, y), f_{2}(x, y)\right]$
$f_{1}+f_{2} \rightarrow$ ip images $g \longrightarrow \delta / p \quad$.
$o p \rightarrow$ operator which is applied pair wise to each pixel in the mare
+ operations are addition, multiplication, subtraction [Arithmetic C]
and Logical [AND, OR XOR. Lt?]
(1) Image subtraction

Appins: Image subtraction has numerous applications in image enchanceme: -nt 4 segmentation namely

* Motion detection
* Back ground illumination
* Calculating error (mean square error) bet' ils \& reconstructed inure
* fundamentals au lased on subtraction of 2 images defined on the difference bet every pair of corresponding pixels in the 2 images

$$
\begin{equation*}
g(x, y)=f(x, 4)-h(x, 4) \tag{1}
\end{equation*}
$$

FIGURE 3.43: Motion detection: fig (a) and (b) are subtracted to get difference imoge $l d$ f. fy
(c) is thresholded to generate binary image (d).
sometimes we can find absolute difference

$$
\begin{equation*}
g(x, y)=|f(x, y)-h(x, y)| \rightarrow \tag{2}
\end{equation*}
$$

Apply!. Interesting app in is in medicine where $h(x, y) \Rightarrow$ mas k which is subtracted from series images to get vely interesting results
(1) Digital subtraction Angiography
$h(x, y) \Rightarrow x$-ray of patients body, $f(x, y) \Rightarrow$ another x-ray which is obtained by injecting radio opaque dye which spreads into his blood steam

$$
g(x, y)=f(x, y)-h(x, y) \Rightarrow \begin{aligned}
& \text { contains } \\
& \text { only bloodnesk }
\end{aligned}
$$

used to extract patients blood carrying vessel
(2) motion detection
(3) Vide compression - to encode only the differences bet' frames.
(4) Automatic Checking of industrial part
(2) Image Addition

* to create a double exposure or composites

$$
\text { * } g(x, y)=f_{1}(x, y)+f_{2}(x, y)
$$

* A weighted blend can also be done

$$
g(x, 4)=\lambda_{1} f_{1}(x, 4)+\lambda_{2} f_{2}(x, 4)
$$

* Image averaging $/$. to average multiple images of the same scene to seduce
noise's en single image of electron microscope can be very noisy. one way to seduce such kind of noise is to acquire multiple images of the same sene for long duration \& then perform image averaging

$$
\bar{g}(x, 4)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x, 4)
$$

arg Image $4 f_{1} \ldots f_{n}$ ale n a cquiled images

$$
f(x, y)=\underset{\substack{\text { in }}}{\substack{\text { noiseless } \\ \text { noise } \\ \text { image }}}
$$

if n is \hbar igh. The arg image in closer to noiseless image if no of lmanc in high.

FIGURE 3.45: (a) Image addition

FIGURE 3.45: (b) Image averaging

The term watershed

 refers to a ridge that ...$$
\begin{aligned}
& \text {... divides areas } \\
& \text { drained by different } \\
& \text { river systems. }
\end{aligned}
$$

FGURE 3.46: (a) Input image 1

The term watershed refers to a ridge that ...

RGURE 3.46: (c) Output of image addition

FIGURE 3.46: (b) Input image 2
The term watershed refers to a ridge that ...

$$
\begin{aligned}
& \text {... divides areas } \\
& \text { drained by different } \\
& \text { river systems. }
\end{aligned}
$$

FIGURE 3.46: (d) Output of ex 3.10

Boolean operations

* If binary images need to be combined/operated, We can use boolean operation.
* Adv/ - can be carried out relatively bast on computer
* Boolean operations are used for masking * mask can be Arsed / Ored with ils image to extract legion of interest
* Logical operations are also used in In age quantization when 8 bit inform has to be reduced to 5/4 bit

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 3.47: Boolean operations

Note

Bit wise AND operation is also used in matlab ex 3.6 to extract various bit planes from the image.

FIGURE 3.48: (a) Input image

FIGURE 3.48: |d|

Fundamentals of spatial filtering

* spatial filtering is one of the principal tool used in DIP for a broad spectrum of applications eq. noise removal, bridging the gaps in object boundaries, Sharping of edges etc
* filtering refers to passing (accepting) or rejecting certain frequency componems
* spatial filtuling involves passing a weighted mask, or kernel over the image and replacing the original image pixel value corresponding to the centre of the kernel with the sum of the original pine values in the region comaspondinay to the kernel multiplied by the kernel weights
mechanics of spatial filteling
* Spatial filter consists of
(i) a neighborhood (typically a small rectangle
2 (ii) a predefined operation that is performed on the image pines encompassed by the neighborhood
* filtering creates a new pixel with coordinates equal to the coordinates of the enter of the neighborhood \& whok values is the result of the filtering operation
* A processed (filtered) image is generate as the center of the filter visists each pixel in the ils Image
* If the operation performed on the image pixels is linear, then the filter is called linear spatial filter othelvite the filter is non-lineas
Linear spatial filteling
<image origin
image pixel

$y-1$	y	$4+1$	
$x-1, y-1)$	$f(x-1,4)$	$f(x-1, y+1)$	
x	$f(x, y-1)$	$f(x, y)$	$f(x, y+1)$
$x+1$	$f(x+1, y+1)$	$f(x+1, y)$	$f(x+1, y+1)$

pixels of image section under filter

* dig illustrates the mechanics of limear spatial filtuling using 3×3 neighborhood.
* At any point (x, y) in the image, the response $g(x, y)$ of the filter is the sum of products of the filter cuefficiens \& the image pinels encompassed by the filter

$$
\begin{aligned}
& \text { piter } \\
& g(x, y)= \omega(-1,-1) f[(x-1), y-1]+ \\
& \omega(-1,0) f(x-1, y)+ \\
& \cdots+\omega(0,0) f(x, y)+ \\
& \cdots+\omega(1,1) f(x+1, y+1)
\end{aligned}
$$

* center coefficient of the filter $\omega(0,0)$ aligns with the pixel at 10 cation $(x, 4)$
* for a mask of size $m \times n$, we assume that $m=2 a+1$ \& $n=2 b+1$, where $a+b$ the integen
* our focus is on filtes of oddsize $3 \times 3 \Rightarrow$ smallest ibing of
* limar \$patial filter of image sixe $M \times N$ with a filter of size $m \times n$

$$
g(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)
$$

Apply given 3×3 mask "w" of fig (a) on the given image $f(x ; y)$ defined as

5	1	2	6	7
4	4	7	5	8
2	6	20	6	7
3	1	2	4	5
10	2	1	2	3

$$
\frac{1}{9} \times \longdiv { \begin{array} { l l l }
{ 1 } & { 1 } & { 1 } \\
{ 1 } & { 1 } & { 1 } \\
{ 1 } & { 1 } & { 1 }
\end{array}] }
$$

ω
i) P image 8 is $=5 \times 5$

5014

1. $\left.\begin{array}{|ccc|cc|}\hline 5 & 1 & 2 & 6 & 7 \\ 4 & 4 & 7 & 5 & 8 \\ 2 & 6 & 20 & 6 & 7 \\ 3 & 1 & 2 & 4 & 5 \\ 10 & 2 & 1 & 2 & 3\end{array}\right]$

$$
\begin{aligned}
& \text { OPp } \\
& = \\
& \frac{1}{9} \times\left[\begin{array}{l}
5 \times 1+1 \times 1+2 \times 1 \\
+4 \times 1+4 \times 1+7 \times 1 \\
\\
+2 \times 1+6 \times 1+20 \times 1
\end{array}\right] \\
& =\frac{49}{9} \cong 5
\end{aligned}
$$

Replace gley tenet value 4 dy 5

$$
\left\lvert\, \begin{array}{lllll}
* & * & * & * & * \\
* & 5 & 6 & 8 & x \\
* & 5 & 6 & 7 & x \\
* & 4 & 5 & 6 & * \\
* & * & * & * & * \\
\hline
\end{array}\right.
$$

(2)

$$
\begin{aligned}
\text { olp }= & \frac{1}{9}[|x|+2 \times 1+6 \times 1+4 \times 1+7 \times 1+ \\
& 5 \times 1+6 \times 1+20 \times 1+6 \times 1] \\
= & \frac{57}{9} \cong 6 \quad 7 \rightarrow 6
\end{aligned}
$$

(3)

$$
\begin{aligned}
\text { olp } & =\frac{1}{9}\left[\begin{array}{l}
2 \times 1+6 \times 1+7 \times 1+7 \times 1+5 \times 1 \\
+8 \times 1+20 \times 1+6 \times 1+7 \times 1
\end{array}\right] \\
& =\frac{68}{9}=8 \quad 5 \rightarrow 8
\end{aligned}
$$

(4) O/P: $\frac{1}{9}[4+4+7+2+6+20+3+1+2]=\frac{49}{9}=5$
5. $O / P=\frac{1}{9}[4+7+5+6+20+6+1+2+4]=\frac{55}{9}=6$
6. Ip: $\frac{1}{9}[7+5+8+20+6+7+2+4+5]=\frac{64}{9}=7$
7. olp: $\frac{1}{9}[2+6+20+3+1+2+10+2+1]: \frac{38}{9}=4$
8. O|r: $\frac{1}{9}[6+20+6+1+2+4+2+++1]: \frac{44}{9}=5$
q. \quad || $P=\frac{1}{9}[20+6+7+2+4+5+1+1+3]: \frac{59}{9}=6$

Spatial correlation \& convolution
Note' Handling images Borders

(1) Ignoring edges. - Apply the mask to only those pixels in the mage for which the mask lies fully with the image

* mask is applied to all pixels in the image except for edges [olp image is smaller than that of ils inform]
(2) padding!.
* In this case, the ils image is padded with zeros at the border.
* This pres the size of ilp image before applying filter
(3) Mirroring!.
* mirror image of the known image is created with the border

$$
\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 1 & 2 & 6 & 7 & 0 \\
0 & 4 & 4 & 7 & 5 & 8 & 0 \\
0 & 2 & 6 & 9 & 3 & 0 & 7 \\
0 & 0 \\
0 & 3 & 2 & 1 & 4 & 5 & 0 \\
0 & 1 & 2 & 2 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\left.\begin{array}{llll}
d \\
5 & 5 & 1 & 2 \\
6 & 6 & 7 \\
5 & 5 & 1 & 2 \\
6 & 7 & 9 \\
4 & 4 & 4 & 7 \\
5 & 8 & 8 \\
2 & 2 & 6 & 20 \\
3 & 7 & 9 \\
3 & 3 & 1 & 24 \\
1 & 1 & 2 & 1 \\
1 & 2 & 3 & 3 \\
1 & 2 & 1 & 2
\end{array}\right)
$$

Linear spatial filteling
(1) correlation
(2) convolution
(1) Corelation! is the process of moving
a filter mask over the image f computing the sum of products at each location. [as explained in Linear spatial filteling]
(2) Convolution, the mechanism is same except the filter is first rotated by 180°

* Let us explain the above concept using $1-D$ illustration. correlation
(a) 50 origin fol $\quad W_{12328} \quad \begin{aligned} & \text { Length of } \\ & \text { image }=8\end{aligned}$ length of filter (six) $=m=5$
(b) 010010000 12328
starting position alignment
(c) $\sqrt{\text { r }} 000000100000000$
$(m-1)$ o's are padded on other 12328 either side of ' f '

(g) Full correlation result

$$
1 \text { correlation }
$$

(h) cropped correlation result (the size should be same as f)
8232100

$$
08232100
$$

convolution
(a) $00010000 \quad 82321$
(b) 8232100010000
(c) $\frac{0000000100000000 \text { zero padding }}{8321}$
(g) Full convolution result

$$
000123280000
$$

$($ (e) $01232800 \rightarrow$ cropped convolution result

00000001000010000
$82(3) 21-$
82 (3) 21 -
82 (3) 21

82 (3) 21

* Two important points to note from the above discussion.
(1) 7 corelation is a function of displacement of the filter.
* If t value of correlation corresponds to zen displacement of the filter
* gino corresponds to one unit displacement $\&$ so on
(2) The correlating a filter " w' th a function that contains all o's \& 9 single 1' yields a result that is copy of w' but rated by 180°
* correlation of a function with a discrete unit impulse yields a rotated version of the function at the location of the impulse
(3) convoluting a fun with a unit impulse yields a copy of the function at the location of the impulse
* correlation yields a copy of the function also but rooted by 180° oo 16 we pre-rotats the filter 4 perform the same sliding sum of products, we will obtain desired result
* for images, the same concepts can be applied
* for filter of size may, we pad the image with a minimum of $m-1$ rows of o's at the top \& bot 10 m and $n-1$ columns of o's on the left 2 right
* convolution is cornerstone of 9 linear system theory

FIGURE 3.30

Correlation
(middle row) and convolution llat row) of a 2-D fifter with a $2 . \mathrm{D}$ discrete, unit impulse. The 0s are stown in gray to simplify visual analysis
b. filter $\rightarrow w(x, y)$ of size $m \times n$, image $\rightarrow f(x, 4)$

* Corelation of a filter \& Image

$$
\omega(x, y) * f(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} \omega(s, t)
$$

* convolution

$$
\omega(x, y) * f(x, y)=\sum_{s_{i}-a}^{b} \sum_{t=-b}^{b} \omega(s, t) f(x-s, y-t)
$$

where $-\operatorname{sign} \Rightarrow$ right flip $\underset{\substack{\text { (rotas } \\ i+b}}{ }$ it by 180.)
vector Representation of Linear filtering
$R \Rightarrow$ characteristic response of a mask
of either correlation or convolution

$$
\begin{aligned}
R & =\omega_{1} z_{1}+\omega_{2} z_{2}+\cdots+\omega_{m n} z_{m n} \\
& =\sum_{k=1}^{m n} \omega_{k} z_{k}=\omega^{\top} z
\end{aligned}
$$

$\omega_{k} \rightarrow$ coefficients of an $m \times n$ filter
$I_{k} \rightarrow$ corresponding image intensities encompassed by filter

$$
\begin{aligned}
R & =w_{1} z_{1}+w_{2} z_{2}+\cdots+L_{q} z_{q} \\
& =\sum_{k=1}^{q} w_{k} z_{k}=w^{\top} z
\end{aligned}
$$

Generating spatial filter masks

* Generating an $m \times n$ linear spatial filter requires in specifying mn mask coefficients.
* Coefficients are selected based on the filter type.
* for example, we want to replace the pines in an image by the average intensity of a 3×3 neighborhood centered on those pixels.
* Then the average value at any location (x, y) in the image is the sum of the nine intensity values in the 3×3 nieghborhood centered on $(x, 4)$ divided by 9 .

$$
R=\frac{1}{9} \sum_{i=1}^{9} z_{i}
$$

* In some applications, we have continuous function of 2 variables \& the objective is to obtain a spatial filter mask based on that function.
ed a Gaussian fun of 2 variably has the basie form $-\frac{x^{2}+y^{2}}{2 \sigma^{2}}$
$h(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}$
where $\sigma=$ stael. deviation
$x, y=$ areluteges
to generate 3×3 mask from this fun, we sample it about its center

Generating spatial filter contd

* Generating a non-linear filter requires
(i) specifying the size of a neighborhood

4 (i) operation (s) to be performed on the image pixels contained in the neighbor hood

* Nonlinear filter are quite powerfal 4 in sone applications they can perform functions that ale beyond the capabilities of linear filter
* eAt. 5×5 maximum filter [which performs max operation] (enteled at an arbitrary point (x, y) of an image obtains the maximum intensity value of the 25 pixels 4 assign that value to location (x, y) in the phoussed In are
smoothing spatial filters
* smoothing filters are used for blurring \& for noise reduction
* Blurring is used in preproussing tasks, such as removal of small detail is from an image prior to Charges object extraction \& bridging of small gaps in lines or curves.
* Noise seduction can be accemplished by blurring with a lineal filter 4 also non linear filter
smoothing Linear filters
* The output (response) of a smoothing linear Spatialfilter is simply the average of the prowls contained in the neighborhood of the filter mask.
* These filters are called as averaging filter or Low-passfilter of meanfilas
* In smoothing filters, the value of evely pixel in an image is replaced by the average of the intensity levels in the neighborhood defined toy the filter mask.
* This process results in an image with reduced sharp transitions in intensities.
* Random noise typically consists of shalp transitions in intensity levels. $\therefore 0$ most obvious application of smoothing is noise reduction.
* The edges (which almost always are desirable fearules of an (mage) are Characterized by shalp intensity transition.
* $\rho 0$ averaging filters have undesirable side effect that they blur edges.
* Another application of this type of process includes the smoothing of false contour which results from using insufficient no of intensity level
* A major use of averaging filter is in the reduction of irrelevant detail in an Image.
[irrelevant \rightarrow pixel legions that ale small WRT to the size of the filter masc]
3×3 smoothing average filter

(b) Weighted average
(4) use of this filter (st one) yields the standard average of the pixels under the mas k

$$
R=\frac{1}{9} \sum_{i=1}^{q} z_{i}
$$

$$
R=\sum_{k_{2} 1}^{q} w_{k} z_{k}
$$

$\stackrel{y}{\Rightarrow} \quad \begin{aligned} & i=1\end{aligned}$ average of the intensity levels of the pixels in the 3×3 neighborhood defined by the mask

* The coefficients of the filter ale all is
* The sided here is that it is computationally more efficient to have coefficients valued 1.
* At the end of filteling press, the entice image is \div by 9 .
* An $m \times n$ mask would have a normalizing constant equal to $\frac{1}{m n}$.
* A spatial averaging fitter in which all coefficients are equal sometimes is called as box-filter
above
* The second tyre u shown innfig (b) is called as weighted average, in which the pixels are multiplied dry different coefficients of filter mask, the le dry giving more importance (weight) to some pixels at the expenses of other.
* in the filter mask shown afore
(i) the pixel at the

| 16 |
| :---: | :---: | :---: | | 1 | 2 |
| :---: | :---: |
| 1 | |
| 2 | 4 |
| 2 | |
| 1 | 2 | 1 center of the mask is multiplied by a high value than any other thus giving this pixel more importance in the calculation of the average.

(i) The other pixels are inversely weighted as a function of their distance from the center of the mask
(iii) The diagonal tells ale further away from the center than the orthogonal neighbors (by a factor of $\sqrt{2}$)
\& ale weighted less than the immediate neighbors of the centre pixel

* The basic strateqy behind weighing the center point the highest \& then redureng the value of the coefficients as a function of increasing distance foom the origin is to simply an attenept to reduद blurring in the smootheng pholey
* The qenelal implementation for filtering an MXN image with a ureighted areraging filter of size mxn (man are odd) is gilen dy

$$
g(x, y)=\frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}
$$

- The denominator is the sum of the mask caepficients \& oo it is a constant that needs to be computed only once
\&Apph of spatial arelaging is to blur an imacge for the purpose of getting a gross repsesentation of objects of interert is, intensity of smaller objects blends with black ground \& larger objects become bloblike 4. eas 4 to detect

Figure 3.33
(a) Original image, of size 500×500 pixels. (b)-(f) Results of smoothing With square averaging filter masks of sizes $m=3,5,9,15$, and 35 , respectively. The black Squares at the top are of sizes $3,5,9,15,25,35,45$, and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the letters at the bottom range in size . Wide and 100 pixels; the large letter at the top is 60 points. The vertical the circles is 25 pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100% ack in incremerders are 15 pixels apart; their intensity levels range frock. The noisy
relangescrements of 20%. The background of the image is 10% black. The noisy langles are of size 50×120 pixels.

a bc
FIGURE 3.34 (a) Image of size 528×485 pixels from the Hubble Space Telescope. (b) Image filtered with a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

3.5.2 Order-Statistic (Nonlinear) Filters

order- statistic (Non-linear) filters

* order - statishc filter ale non linear spatial filters whose response is based on ordering (ranking) the pixels contained in the image area encompassed by the
- filter
* and replacing the value of the center pixel with the value determined by the ranking result
* The best -known filter in this categ on g is median filter
* In median filter, the value of a pined is replaced by the median of the The intensity values in the neighborhood of that pixel.
* Median files are quite popular because - for random noise, they provide excelled noise-reduction capabilities with less blurring than linear smoothing filses
- are effective in the presence of imepulk noise, also called as salt and pepper noise [appearance as white zblack dot] superimposed on an image]
$\left.\begin{array}{c}\text { + The median } \xi \\ \text { of asset of } \\ \text { value }\end{array}\right\}=\frac{1}{2} \begin{aligned} & \text { values } \\ & \text { in the } \\ & \text { set }\end{aligned}$
* The median, ξ of a set of values is such that half the values in the set are less than or equal to \& $\&$ half ale greater than or equalue to $\&$
* to perform median filtering at a point in an image
(i) we sort the values of the pined in the neighborhood
(ii) determine their median

2(ii) assign that value to the correspondent pixel in the filtered image
tee. in a 3×3 neighborhood, the median is $5^{\text {th }}$ largest value
in a 5×5 neighborhood, it is the $13^{\text {th }}$ largest value 4 so on

* Suppose a 3×3 neighborhood has values

$$
\begin{aligned}
& \text { Suppose a } 3 \times 3 \text { veigner } 20,20,25,100) . \\
& (10,20,20,20,15,20,210 \text { ported as }
\end{aligned}
$$

values are sorted as

$$
\begin{aligned}
& \text { Values are sorted } \\
& {[10,15,20,20,20,20,20,25,100)} \\
& - \text { median }=20
\end{aligned}
$$

* principal function of median filters is to force points with distinct intensity level to be more like their neighbors
* The isolated clusters of pixels that are light or dark WRT their neighbors \& whore area is I ers than $\frac{m^{2}}{2}$ [one-half the filth area] ale eliminated by a $m \times m$ median filter * In this case elimination means, forced to the median intensity of the neighbor * larger clusters are affected considerably tess.
* median represents $\Rightarrow 50^{\text {th }}$ percentile of a ranked set of the no
- en $100^{\text {th }}$ percentile \Rightarrow max filter which is useful for finding the brightest points in an image
* The response of a 3×3 max filter is given by $R=\max \left\{z_{k} \mid k=1,2,-a\right\}$
* $0^{\text {th }}$ percentile filter is min filter is used for the opposite purpose.

a b c
FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)
sharpening spatial filters
* objective of sharpening is to highlight transitions in intensity.
* appins:-ranging from elelthonie printing \& medical Imaging, industrial inspection \& autonomous guidance in military system.
* image blurring in spatial domain is accomplished dy pixel averaging
in a neighborhood
* averaging is analogous to integration
* so we can conclude the sharpening can be accomplished by spatial different
* the strength of the response of a derivative operator is proportional to the degree of intensity discontinuity of the image at the point at which the operator is applied
* Thus image differentiation en hangs edges and other discontinuities such as noises 4 deemphasizes areas with slowly varying intensities.

Foundation

* sharpening filters are based on first \& second-order derivatives respecting.
* to simplify the explanation Let us initially focus on one -dimensional derivatives
* we are interested in the behavior of there derivatives in the areas of
(i) Constant intensity
(ii) at the onset \& end of discontinuities Cstep \& ramp dis continuities)
\& (iii) along intensity ramps
* There types of dis continuities can de used to model noise points, lines 4 edgy in an image.
* The behavior of derivatives during transitions into \& out of these image features also is of interest
\rightarrow The derivatives of a digital functions are defined in terms of differences
* There ale various ways to defines these differences.
(1) first derivatives
+ must be zero in areas of constant intensity
2 must be nonzero at the onset of a intensity step or ramp
3 must be non zero along ramps
(2) second-derivatiles
+ must be zero in constant areas
2 must be nonzew at the onset $\&$ end of an intensity step or ramp
$3^{\text {must be zero along ramps of }}$ constant slope
* basic defn of 1 st-order delivatile of one-dimensional fun $f(x)$ is

$$
\begin{equation*}
\frac{\partial f}{\partial x}=f(x+1)-f(x) \tag{1}
\end{equation*}
$$

* second-order derivative of $f(x)$

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}=f(x+1)+f(x-1)-2 f(x) \tag{2}
\end{equation*}
$$

* scan line \Rightarrow values are intensity values. which ale plotted as dot in fig@
* big (a) intensity ramp, 3 sections of constant, intensity step
$* O \Rightarrow$ onset or end of intensity transistion
* when computing $1^{\text {st }}$ detivative $a+$ lock x we subtract the value of fun at the location from next point. Look-ahead operation
* to compute the gnoderivatile we wee the previous $\&$ next points.
* Let us consider the 3 properties of 1 st 4 2no derivathes we encounter
area of constant intensity
- both devivaties are zeros
[so condo ${ }^{n} 1$ is statisfied for bot]
(2) An intensity ramp followed by a step
- $1^{\text {st }}$ derivative is non-zero at the onset of the ramp and the step
-2^{n} derivative is non -zen wo at the onset and end of both the ramp $\&$ ste
[and proput4 is satisfied]
(3) $1^{\text {st }}$ derivative is non $3 \operatorname{ero}$
42^{n} is zen along the ramp
Note that the sign of the second derivative Changes at the onset and end of a step or a ramp
* fig (b) ina step transition a line joining these 2 values crosses the horizontal axis mid way bet' 2 extremes. This $3 e r o$
* This zero crossing property is quite useful for locating edges.
* edges in digital images often are ramp like transitions in intensity
in which care
inst derivative of the image would result in thick edges 00 the derivative is non-zero along the ramp
* gino derivative would produce a double edge one pixel thick, separated dy sew
$\therefore 2^{n o}$ derivative enhances fine detail much better than the is derivative 4 is ideally suited for sharpening images
using the second derivative for Image Sharpening. The Laplacian
* Implementation of 2-D $2^{n d}$ order derivatives \& their uses for image sharpening.
* The approach consists of defining a discrete formulation of the second-order derivative \& then constructing a filter mask based on that formulation
* Isotropic filters, whose response is inderen-- dent of the direction of the discontinuities in the image to which the filter is Applied
* Istoropic filter are rotation invariant [rotating the image \& then applying the filter give same result as applying the filter to the Image first 4 then rotating the result?.
* simplest isotropic derivative operator is Laplacian which for a function (image) $f(x, y)$ of 2 variables is defined as [Rosenfed \& KaKa 1982]

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \rightarrow 3
$$

* 0° derivatives of any order are linear pen, the Laplacian is a linear operator
using eq (2) (2noorda)

$$
\frac{\partial^{2} f}{\partial x^{2}}=f(x+1, y)+f(x-1, y)-2 f(x, y)
$$

$$
\rightarrow(x-\text { dilen })
$$

4 in 4 -dizen

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y^{2}}=f(x, y+1)+f(x, y-1)-2 f(x, y) \tag{5}
\end{equation*}
$$

- the discrete Laplacian of 2 variable is

$$
\begin{align*}
\nabla^{2} f(x, y) & =f(x+1, y)+f(x-1, y)+f(x, y+1) \\
& +f(x, y-1)-4 f(x, 4) \rightarrow \text { b }
\end{align*}
$$

क this eqn can de implemented using
the filter mask shown in fig 3.37 © Which gives an isothopic result for rotations in increments of 90°

* The diagonal directions can foe incorporated $y+1$ y $y-1$ in the deft of the digital laplacian
 by adding 2 more terms in eq $4+$
\therefore each diagonal term

$$
\text { also contains }-2 f(x, 4)
$$

- total subtracted from the diffelence term now would he $-8 f(x, 4)$.
\rightarrow This can we used for filter mask ineplementation of fig 3.37 (b).
* This mask yields isotropic results in increments of 45°

90°		
0	1	0
1	-4	1
0	1	0

45		
1	1	1
1	-8	1
1	1	1

3.37 (2)
$3.3+6$

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

* because the Laplacian is derivative operator, it uses highlights intensity discontinuities in an image \& demphasizes regions with slowly varying intensity level
* produce images that have grayish edge lines 4 other discontinuities in an image all superimposed on adark featureless background
* Laplacian for image sharpening

$$
g(x, 4)=f(x, 4)+c\left[\nabla^{2} f(x, 4)\right]
$$

$f(x, y) \rightarrow$ ils mare
$g(x, y)$ - sharpened image

$$
c=-1=\text { constant } \quad(\text { sub })
$$

1 if other filter ace used add)
unsharp masking \& Highboost filtering

* A process that has been used by the priting \& publishing industry for many years is to sharpen images consists of subtracting an unsharp (smoothed) version of an Image from the original image
* Th is process is called unsharp masking
* 2 consists of foll step

1. Blur the original image
2. subtract the blurred image from the original (the resulting difference is (aIled the mask).
3. Add the mask to the original

* $\bar{f}(x, y) \Rightarrow$ denote blurred image
* unshalp masking is expressed in eqn form as follows

$$
g_{\text {mask }}(x, y)=f(x, y)-\bar{f}(x, y)
$$

* Then we add a weighted portion of the mask bacle to the original image

$$
\begin{equation*}
g(x, y)=f(x, y)+k * g_{\text {mask }}(x, y) \tag{2}
\end{equation*}
$$

$K \geqslant 0$ for generality
$k=1$ we have unshalp masking
$K>1$, process is referred as high boost filtering
$K<1$, de-emphasizes the contribution of the un-sharp mask
\qquad original
signal

using first-order derivatives for (Non-llnear)
Image sharpening - The Gradient

* 1st derivatives in image processing are implemented using the magnitude of the gradient
* for a function $f(x, y)$, the gradient of " f " at coordinates (x, y) is defined as the 2-dimensional column vector

$$
\nabla f \equiv \operatorname{grad}(f) \equiv\left[\begin{array}{l}
g_{x} \tag{10}\\
g_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]-
$$

* The Vector has important geometrical property. it points in the direction of the greatest rate of change of ' f ' at location (x, y)
* magnitude (length) of vector ∇f, denoted as $M(x, y)$, where

$$
\begin{equation*}
M(x, y)=\operatorname{mag}(\nabla f)=\sqrt{9 x^{2}+g_{y}^{2}} \tag{II}
\end{equation*}
$$

is the value at (x, y). of the rate of change in the direction of the gradient vector.

$$
\begin{equation*}
m(x, y) \approx\left|g_{x}\right|+\left|g_{y}\right| \rightarrow \tag{12}
\end{equation*}
$$

partial derivatives of eq (0) are not rotation invariant (uotho pic) buts the magnitude of the gradient hector is

* we define discrete approximation to the preceding equs \& from there formulate the appropriate filter mask
* 3×3 region of image [$Z s$ are intensityvalue]

f14(a) | z_{1} | z_{2} | z_{3} |
| :--- | :--- | :--- |
| z_{4} | z_{5} | z_{6} |
| z_{7} | z_{8} | z_{9} |

(1) Roberts cross-gradient operators

-1	0
0	1

0	-1
1	0

$$
g_{x}=\left(z_{8}-z_{5}\right) \quad \& \quad g_{y}\left(z_{6}-z_{5}\right)
$$

* 2 other detris proposed by Roberts in the early development of digital Image processing use cross different

$$
g_{x}=\left(z_{9}-z_{5}\right) \quad \& \quad g_{4}=\left(z_{8}-z_{6}\right)
$$

use eq 11 \& 13 we can compute gradient imaqe as

$$
\begin{gather*}
M(x, 4)=\sqrt{9 x^{2}+9_{4}} \\
M(x, y)=\left[\left(z_{9}-z_{5}\right)^{2}+\left(z_{8}-z_{6}\right)^{2}\right]^{1 / 2}
\end{gather*}
$$

If we ure eq (13) + (13)

$$
\begin{aligned}
M(x, y) & \approx|9 x|+\left|9_{4}\right| \\
M(x, y) & \approx\left|z_{9}-z_{5}\right|+\left|z_{8}-z_{6}\right|
\end{aligned}
$$

* The partial derivatives terms in eq(10) can be inelemented using 2 lineas bilter as shown in fis 6
* These masks are refered as

Roberts-cross-gradient operaton
(ii) sobel operatoy

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

* masks of evensizes don't have a center of symmetry
* The smallest filter mask is 3×3

$$
\begin{align*}
g_{x}=\frac{\partial f}{\partial x}=\left(z_{7}\right. & \left.+2 z_{8}+z_{9}\right) \\
& -\left(z_{1}+2 z_{2}+z_{3}\right)
\end{align*}
$$

4

$$
g_{4}=\frac{\partial f}{\partial y}=\left(z_{3}+2 z_{6}+z_{9}\right)-\left(z_{1}+2 z_{4}\right)
$$

*There equ's can be implemented using masks of fig (c)

* Substituting $9 x+g_{4}$ in (n)

$$
\begin{align*}
M(x, 4) \cong & \left|\left(z_{7}+2 z_{8}+z_{9}\right)-\left(z_{1}+2 z_{2}+z_{3}\right)\right| \\
& +\left|\left(z_{3}+2 z_{6}+z_{9}\right)-\left(z_{1}+2 z_{4}+z_{3}\right)\right| \tag{18}
\end{align*}
$$

* The masks are called sober operator
3.6 Sharpening Spatial Filters 165(2)
FIGURE 3.40
(a) Original image.
(b) Result of blurring with a Gaussian filter. (c) Unsharp mask. (d) Result of using unsharp masking.
(e) Result of using highboost filtering.

Module -3
Filtering, I mage Restoration
Preliminary concepts, The D FT of one variable, Extemion to functions of 2 variables, souse propletries of the $2 . D \mathrm{DFT}$, freq domain fitteling, A Model of the mintage degradation । Restoration processes. No is models, restoration in the presence of noise, only-spatial fitteeng, homomorphie filtering
Ch $4: 4.2+04.7,4.9 .6, \mathrm{Ch}_{5} \div 5.2,5.3$
4.5 Extension to function of 2 variables]
4.5.1 The 2-D impulse and its shifting property

* The impulse, $\delta(t, z)$ of 2 continuous Variables $t \& z$ is defined as in

$$
\delta(t, z)= \begin{cases}\infty ; & \text { if } t=z=0 \\ 0 ; & \text { otherwise. }\end{cases}
$$

$$
\delta(t)= \begin{cases}0 & \text { if } t \neq 0 \\ \infty & \text { if } t=0\end{cases}
$$

o; otherwise.

$$
4 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(t, z) d t d z=1
$$

- 2-D impulse exhibits shifting propel +y

$$
\int_{-\infty}^{\operatorname{as}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) \delta(t, z) d t d z=f(0,0)
$$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) \delta\left(t-t_{0}, z-z_{0}\right) d t d z=f\left(t 0, z_{0}\right)
$$

[shifting property yields the value of the fun $f(t, z)$ at the location of the impulse.
$*$ for discrete variables $x \& y$, the $2-D$ discrete impulse is defined as

$$
\delta(x, y)= \begin{cases}1 ; & \text { if } x=y=0 \\ 0 ; & \text { othelwise }\end{cases}
$$

\& its shifting property is

$$
\sum_{x=-\infty}^{\infty} \sum_{y_{i}-\infty}^{\infty} f(x, y) \cdot \delta(x, y)=f(0,0) \rightarrow 5
$$

er $\sum_{x_{i}-\infty}^{\infty} \sum_{y_{1}-\infty}^{\infty} f(x, y) \cdot \delta\left(x-x_{0}, y-y_{0}\right)=f\left(x_{0}, y_{0}\right)$.
4.5.2 The 2-D continuous Fourier Transform pair
Left $f(t, z) \rightarrow$ continuous function of 2 continuous valiables it $4 z$.

* 2-dimensional, continuous FT pair (FF)
is given by

$$
\begin{aligned}
& F(\mu, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) e^{-j 2 \pi(\mu t+v z)} d t d z \\
& f(t, z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\mu, v) e^{j 2 \pi(\mu t+v z)} d \mu d v
\end{aligned}
$$

$\mu+v \rightarrow$ the variables
t $2 z \rightarrow$ ale interpreted to be continuous spatial variably
(1) Fig shows a 2-D fun analogous to 1-D

$$
F(t, z)=A, z)
$$

$$
F(\mu, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) e^{-j 2 \pi(\mu t+v z)} d t d z
$$

$$
=\int_{-T / 2}^{T / 2} \int_{-z / 2}^{z / 2} A e^{-j 2 \pi(\mu t+V z)} d t d z
$$

$$
\begin{aligned}
=A T z & {\left[\frac{\sin (\pi \mu r)}{\pi \mu \tau)}\right] } \\
& {\left[\frac{\sin (\pi \vee z)}{(\pi \vee z)}\right] }
\end{aligned}
$$

$$
|F(\mu, v)|=A T z\left|\frac{\sin (\pi \mu r)}{(\pi \mu r)}\right|\left|\frac{\sin (\pi v z}{\pi v z}\right|
$$

$4.5 \cdot 3$
TWO - Dimensional sampling \& 2.0 sampling
Theorem

* sampling in 2 -dimensions can de modeled using the sampling function (2-D impulse train]

$$
\begin{align*}
& \text { Modeled } \\
& (2-D \text { impulse train }] \\
& S_{\Delta T A z}(t, z)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(t-m \Delta r, z-n \Delta z)
\end{align*}
$$

where
$\Delta T \& \Delta z$ all the separations bet' samples along 't'axis \& z-axis of the continuous fun $f(x, z)$.

* eq (a) represents a set of periodic impulses extending infinetly along the 2 axis as shown in fig below.

* multiplying $f(t, z)$ by $S_{\Delta T \Delta z}(t, z)$ yields the sampled fun
* function $f(t, z)$ is said to be band-limised, if its fourier transform
is 0 outside a rectangle established by the intervals $\left[-\mu_{\max }, \mu_{\max }\right.$] \& $\left.\int_{30}-V_{\text {max }}, V_{\text {max }}\right]$.

$$
\begin{align*}
F(\mu, v)=0 \text { for }|\mu| & \geq \mu_{\max } \text { \& } \\
|v| & \geq \mu_{\max }
\end{align*}
$$

* The 2-dimensional sampling theorem states that a continuous, band-limited function $f(t, z)$ can be recovered with no error from a set of its samples if the sampling intervals are

$$
\begin{equation*}
\text { \& } \Delta z<\frac{1}{2 V_{\max }} \text { of the sal } \tag{11}
\end{equation*}
$$

or expressed in Hems of the sampling rate if

$$
\begin{align*}
& \frac{1}{\Delta T}>2 \mu_{\max } \\
& \& \frac{1}{\Delta Z}>2 \operatorname{lnmax}_{\text {max }}
\end{align*}
$$

* no information is lost if a 2-D, band-limited continuous fun is represented by samples a cquiled at rates greater than twice the highest freq contents of the function in both $\mu+V$-directions

(a) an over sampled fun

(b) under-sampud bun
4.5.y Aliasing in Images
* concept of aliasing to images \& several aspects related to image sampling of resampling is discussed.
* $f(t, z)$ of 2 continuous variables t \& z can be band-limited in general only if it extends infinitely in both coordinate directions.
* By limiting the dilation of the function, introduces corrupting the freq components extenderig to infinity in the freq -domain
* 0 we canst sample a fun infinitely, aliasing is always present in digital Image
* There ale 2 principal manifestations of aliasing in Images
(i) spatial aliasing
\& ('i') Temporal aliasing
- spatial aliasing:' is due to undersampling
* Temporal aliasing: is related to related to time intervals bet' images in a sequence of images.
"wagon wheel" effect in which wheels with spokes in a sequence of images (for eq in amovie) appear to be rotating backward This is caused by the frame rate being tOO low WRT the speed of wheel rotation in the sequence
* spatial aliasing!.

The key concerns with spatial aliasing in images ares introduction of artifacts such as jaggedness in line features, suprious highlights of the appearance of freq patterns not present in the original imare

* The effects of aliasing can be reduced by slightly defocusing the some to the digitized so that high frequencies ale attenuated
* anti-aliasing filtering has to be done at the "front-end" before the image is sampled.
* blurring a digital image can reduce additional aliasing ar rifacts caused by resampling
image interpolation 4 resampling
* perfect reconstruction of a bandlinited image function from a set of its samples requires 2 -D convolution in spatial domain with a sinctuy
* WKt a perfect reconstruction requires interpolation using Infinite summation
* one of the most common appins of 2-D interpolation in image processing - is in image resing [zooming * shrinking).
* zooming, nne viewed as over-sampling While shrinking may be viewed as under. sampling
* They ale applied to digital in ages
* A special case of nearest neighbor interpola--tion that ties in nicely with oversampling is zooming by pinel replication [which is applicable when we want to the the size of an image an integel no of times]
* If we ned to double the size of the image, we duplicate each column which doubles image size in horizontal
* Then we duplicate each row of the enlarge direction. image to double is used to enlarge
* The same procedure integer no of times the image any integerignment of each * The intensitylerel arsing by the of act pixel is predetermined are exact duplicates that new locations are is of old location
* Image shrinking is done in a manner similar to zooming.
* under sampling is achieved dey row-column deletion. (to).
* example: to shrink an image by $1 / 2$, we delet evely other row \& column.
* To reduce aliasing, it is good Idea to blur an image slightly before shrinking it.
* An alternate technique is to super sample the original scene \& then reduce (resample) its size by row \& column deletion.
* This yield sharper results than with his yield (clear access to onignal
smoothing. (image is needed)
l ned
* If no access to original scene, super sampling is not an option.
- for image which hare strong edge content, the effects of aliasing ale seen as block-like image components called Jaggies
moire patterns! another typ of artifact which result from sampling scenes with periodic or nearly reliodie components of in digital Imam, the problem arises when scanning media print such as newspapers, magzines
* super Imposing one pattern on the other croats a beat pattern that has Hequencies not present in either of the original pattern. * the morie effect produced by 2 patterns of dots is discussed further,
* Newspapers q other printed materials make use of so called halftone dots which are black dots or ellipses whose sizes \& various joining schemes are used to stimulock gray tones.
4.5.5. The 2.D disclets Fourier Transforms \& its inverse
* 2-D discrete Fourier Transform DFT

$$
\begin{aligned}
& \text { 2.D discrete Fourier Trans } \\
& F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{x y}{N}\right)}
\end{aligned}
$$

$f(x, y) \rightarrow$ digital image of size $M \times N$
$U, V \rightarrow$ discrete values ranging from 0 to $\mathrm{M}-1$ \& O to $\mathrm{N}-1$ Resp.

* inverse $D F T$

$$
\begin{equation*}
f(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{V=0}^{N^{-1}} F(u, v) e^{j 2 \pi\left(\frac{u x}{M}+\frac{2 u y}{N}\right)} \tag{16}
\end{equation*}
$$

FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c) and (d), the sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show significant aliasing. Note that (d) masquerades as a "normal" image.

$a b c$
FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasi (b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visib (c) Result of blurring the image in (a) with a 3×3 averaging filter prior to resizing. The image is sligh more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Sig Compression Laboratory, University of California, Santa Barbara.)
generate rig. $4.10(\mathrm{v})$.

a b c
FIGURE 4.18 Illustration of jaggies. (a) A 1024×1024 digital image of a computer-generated negligible visible aliasing. (b) Result of reducing (a) to 25% of its original size using bilinear intiof (c) Result of blurring the image in (a) with a 5×5 averaging filter prior to resizing it to 25% wh? interpolation. (Original image courtesy of D. P. Mitchell, Mental Landscape, LLC.)

abc
 de f

FIGURE 4.20
Examples of the moiné effect. These are ink drawings, not digitized patterns. Superimposing one pattern on the other is equivalent mathematically to multiplying the patterns.

Color printing uses red, green. and blue dots to produce the sensation in the cye of continuous oolor.

FIGURE 4.21

A newspaper image of size 246×168 pixels sampled at 75 dpi showing a moiré pattern. The moiré pattern in this image is the interference pattern created between the $\pm 45^{\circ}$ orientation of the halftone dots and the north-south orientation of the sampling grid used to digitize the image.

a beat pattern that has frequencies not present in either of the original pat: terns. Note in particular the moiré effect produced by two patterns of dotral this is the effect of interest in the following discussion.

Newspapers and other printed materials make use of so called halfone dots, which are black dots or ellipses whose sizes and various joining schems are used to simulate gray tones. As a rule, the following numbers are typiad newspapers are printed using 75 halftone dots per inch (dpi for short), magr zines use 133 dpi , and high-quality brochures use 175 dpi. Figure 4.21 show

* H. 6 Some proputies of the 2-D Discrete Fourier Transform [DFT]
, 4.6.1 Relationship between spatial \& frequency intervals
\% $f(t, z) \Rightarrow$ continuous fun
a $f(x, y) \Longrightarrow$ sampled form of $f(t, z)$ digital image which consist of $M \times N$ samples taken it? $7^{-} z^{\prime}$ directions resp.
* Let $\Delta T \& \Delta z \rightarrow$ denote the separn bet' samples.
* Separations bet' the corresponding discrete, Hequency domain variables are given by

$$
\begin{aligned}
\Delta U & =\frac{1}{M \Delta T} \rightarrow 1 \\
\text { \& } \Delta v & \rightarrow \frac{1}{N \Delta T} \rightarrow 2
\end{aligned}
$$

separation bet' samples in He domain are inversely proportional both $t D$ the spacing bet' spatial samples no of samples
4.6.2 Translation \& Rotation

FTpais satisfies the fOl translation Properties

$$
\begin{aligned}
& f(x, y) e^{j 2 \pi\left(u_{0} x / m+v_{0} y / N\right)} \longrightarrow F\left(u-u_{0},\right. \\
&\left.u-v_{0}\right)
\end{aligned}
$$

4

$$
\begin{equation*}
f\left(x-x_{0}, 4-40\right) \longleftrightarrow F(u, v) e^{-j 2 \pi\left(x_{0} u / m\right.} \tag{3}
\end{equation*}
$$

* tying $f(x, y)$ by exponential Shows shifts the origin of $D F T$ to (u_{0}, u_{0})
* conversely sing $F(u, v)$ by negative exponential shifts the origin of

$$
f(x, y) \text { to }(x 0,40)
$$

* using the polar co-ordinates

$$
\begin{aligned}
& x=r \cos \theta, \quad y=r \sin \theta, \quad u=\omega \cos \psi \\
& v=\omega \sin \varphi
\end{aligned}
$$

results in

$$
f\left(\gamma, \theta+\theta_{0}\right) \longleftrightarrow F\left(\omega, \varphi+\theta_{0}\right)
$$

\Rightarrow rotating $f(x, 4)$ by an ange oo rotates $F(u, v)$ by the same angle conversly, rotating $F(u, v)$ rot fates $f(x, y)$ by the same angle

* $\sqrt{46 \cdot 3 \text { periodicity }}$

2-D FT \& its inverse are infinet infinitely periodic in the $u \neq V$ directions is

$$
\begin{align*}
& F(u, v)=F\left(u+k_{v}, v, u\right) \\
&=F\left(u, u+k_{2} N\right)=F\left(u+k_{1} M\right. \\
& f \tag{6}\\
& f(x, y)=f\left(x+k_{1} m, y\right)=f\left(x, y+k_{2} N\right) \\
&\left.=f\left(x+k_{1} M\right), y+k_{2} N\right) \longrightarrow
\end{align*}
$$

where $k_{1}+k_{2}$ are integers

* The periodicities of the Transforms 4 its inverse ace important sues in the implementation of DFT-based algorithms
* The transform data in the

$\frac{a}{b}$

FIGURE 4.23
Centering the Fourier transform. (a) A 1-D DFT showing an infinite number of periods.
(b) Shifted DFT obtained by multiplying $f(x)$ by $(-1)^{x}$ before computing $F(u)$. (c) A 2-D DFT showing an infinite number of periods. The solid area is the $M \times N$ data array, $F(u, v)$, obtained with Eq. (4.5-15). This array consists of four quarter periods. (d) A Shifted DFT obtained by multiplying $f(x, y)$ by $(-1)^{x+y}$
before computing $F(u, v)$. The data now contains one complete, centered period, as in (b).

* Consider the 1-D spectrum in above fig
* The transform data in the interval from 0 to $m-1$ consists of 2 -back to back half periods meeting at a point $\frac{M}{2}$.
* For displaying a filteling purposes, it is more convenient to hare in this interval a complete period of transform in which data ale contiguous as shown in fig b

$$
f(x) e^{\text {is fig(b) }}
$$

* multiplying $f(x)$ by exponential term shown shifts the data so that the orig in $F(0)$ is located to yo
* Let $L_{0}=m / 2$, the exponential tels becomes jr which is equal to
(-1) $x: 0: x=1 n+e q$
- in this care

$$
\begin{aligned}
& \text { care } \\
& f(x)(-1)^{x} \Leftrightarrow F(u-m / 2)
\end{aligned}
$$

* plying $f(x)$ by $(-1)^{x}$ shifts the dates so that $F(0)$ is at the center of the interval $[0, M-1]$
* The principal is same far 2.D
* instead of 2 half reliods, the le are no u 4 quarter yeeiods meeting at the pt

$$
(m / 2, N / 2)
$$

* The dashed line comsponds to the infinite no of reeiods of $2-D D F$,
* If we shift data so that $F(0,0)$ is

$$
\begin{aligned}
& \operatorname{at}(\mathrm{N} / 2, \mathrm{~N} / 2) \\
& \left(\mathrm{U}_{0}, b_{0}\right)=(\mathrm{N} / 2, N / 2)
\end{aligned}
$$

eq(3) besom

$$
f(x, y)(-1)^{x+y} \Longleftrightarrow F\left(u-\frac{M}{2}, u-\frac{M}{2}\right)
$$

\#
4.6.4 symmetry properties

Any real or complex fun $w(x, y)$ can de expressed as the sum of an even 4 odd part (each of which can be real or complex)

$$
\begin{equation*}
\omega(x, y)=\omega e(x, y)+\omega_{0}(x, y) \rightarrow \tag{9}
\end{equation*}
$$

where even $\& \theta$ odd pacts are defined as

$$
w_{e}(x, 4) \triangleq \frac{w(x, 4)+\omega(-x-4)}{2}
$$

\& $\omega_{0}(x, y) \triangleq \omega(x, y)-\omega(-x-y)$
using

$$
\begin{equation*}
w_{e}(x, y)=w_{e}(-x,-4) \tag{a}
\end{equation*}
$$

\& $\omega_{0}(x, y)=-\omega_{0}(-x,-4)$ \qquad

* even fun's are said to be symmetric \& odd pun's are antisymmetric

$$
\text { we }(x, 4)=\text { we }(M-x, N-4) \rightarrow
$$

\& $\omega_{0}(x, y)=-\omega_{0}(M-x, N-y) \rightarrow$
where $M \& N \Rightarrow$ no of rows \& column of a 2-parlay

* kt product of gerent $\& 2$ odd fun's sere 4 product of aneren 2 an odd fun is odd
* The only way a discrete fun ion be odd is if all its samples sum to zero.
* These properties lead to

$$
\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} w_{e}(x, y) \operatorname{wo}(x, y)=0
$$

\therefore because the arguments of eq (3) is odd the result of sammation is 0
eff.
Consider the $1-0$ seq

$$
\begin{aligned}
f & =\{f(0), f(1), f(2), f(3)\} \\
& =\{2,1,1,1\} \quad M=4
\end{aligned}
$$

(*) to test for evenness, the cond n

$$
\begin{aligned}
& f(x)=f(M-x) \quad=f(4-x) \\
& f(0)=f(4) ; f(1)=f(3) \\
& f(2)=f(2) ; f(3)=f(1)
\end{aligned}
$$

* any -4 point even seq n has to have the form

$$
\{a, b, c, b\} \quad \begin{aligned}
& 2^{n 0} \& \$ a s+1 \\
& p+\text { must } b e
\end{aligned}
$$

pt. must be equal
(2) An odd sean

$$
\begin{aligned}
\text { An odd } & =\{g(0), g(1), g(2), g(3)\} \\
& =\{0,-1,0,1\} \\
g(x) & =-g(4-x) \\
g(1) & =-g(3) \\
& =\{0,-b, 0, b\}
\end{aligned}
$$

* when M is an even no, a 1-D odd seq y has the property that the points at location 0 \& $\mathrm{m} / 2$ always are zero
* when M is odd, the $18+$ teem still has to be 0, but the remaining teem form pairs with equal value but opposite sign.
* $\{0,-1,0,1,0\}$ is neither odd nor even. even though the basic structure appears to be odd
- 000000

000000
$0 \quad 0 \quad-1010$
$000-2020$
is $o d d$
$00-1010$
000000

* adding another row \& column of o's would give a result i.e, neither odd nor even.
* A property used frequently is that FT of a real fun $f(x, y)$ is conjugate symmetry c

$$
F^{*}(u, v)=F(-u,-v)
$$

* If $f(x, y)$ is imaginary, its F_{T} is conjugate antisymmetric

$$
F^{*}(u, v)=\left[\sum_{x=0}^{m-1} \sum_{y=0}^{N^{-1}} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{x y}{N}\right.}\right.
$$

$$
\begin{aligned}
* F^{*}(u, v) & =\left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right)}\right]^{*} \\
& =\sum_{x=0}^{N-1} \sum_{4=0}^{N-1} f^{*}(x, y) e^{j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right)} \\
& =\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left[(-u) \frac{x}{M}+\frac{[-v] y}{N}\right]} \\
& =F(-u,-v)
\end{aligned}
$$

LE 4.1 Some metry perties of the DFT and its erse. $R(u, v)$ $I(u, v)$ are the 1 and imaginary tts of $F(u, v)$, pectively. The m complex dicates that a nction has onzero real and naginary parts.

Frequency Domain ${ }^{\dagger}$

1) $\quad f(x, y)$ real $\quad \Leftrightarrow \quad F^{*}(u, v)=F(-u,-v)$
2) $\quad f(x, y)$ imaginary $\Leftrightarrow F^{*}(-u,-v)=-F(u, v)$
3) $f(x, y)$ real and odd $\Leftrightarrow \quad F(u, v)$ imaginary and odd
4) $f(x, y)$ imaginary and even $\Leftrightarrow F(u, v)$ imaginary and even
5) $f(x, y)$ imaginary and odd $\Leftrightarrow \quad F(u, v)$ real and odd
6) $f(x, y)$ complex and even $\Leftrightarrow F(u, v)$ complex and even
7) $f(x, y)$ complex and odd $\Leftrightarrow \quad F(u, v)$ complex and odd
${ }^{\dagger}$ Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range $[0, M-1]$, and y, and v in the range $[0, N-1]$. To say that a complex function is even means that its real and imaginary parts are even, and similariy for an odd complex function.

For example, in property 3 we see that a real function with elements
(1)

$$
\begin{aligned}
& f(x)=\{1,2,3,4\} \\
& F(u)=\{10,[-2+2 j],-2,[-2-2 j]\}
\end{aligned}
$$

if $f(x, y)$ real \Leftrightarrow then $R(u, v)$ even.
I (u, v) od d
$R(u, v)=\{10,-2,-2,-2\}$ is even
$I(u, v)=\{0,+2 j, 0,-2]$ is odd
(2)

$$
\begin{aligned}
& f(x)=j\{1,2,3,4\} \Leftrightarrow F(u)=\{(2.5 j), \\
& F(u)=\{2.5 j, 0.5-0.5 j,-0.5 j,-0.5-0.5 j\} \\
& R(u, v)=\{0,0.5,0,-0.5\} \text { is odd } \\
& I(u, v)=\{0,0.5,0,-0.5 \\
& I(u, v)=\{2.5,-0.5,-0.5,-0.5\} \text { is }
\end{aligned}
$$ oren

Property 3:-
If (x, y) is real fun, the real part of its DFT is even 4 the odd pact is $0 d d$ proof \& $F(u, v)$ is complex.

$$
F(u, v)=R(u, v)+j I(u, v)
$$

Then $F^{*}(u, v)=R(u, v)-j I(u, v)$
$M=1 \quad N^{-1}$

$$
F(-u,-v)=R(-u,-v)+j I(-u,-v)
$$

whet if $f(x, y)$ is real, then

$$
\begin{gathered}
F^{*}(u, v)=F(-u,-v) \\
R(u, v)=R(-u,-v)=\text { even } \\
4 I(u, v)=-I(-u,-u)=\text { odd. }
\end{gathered}
$$

property 8:
ST If (x, y) is real \& even, then the? imaginary part of $F(u, v)$ is 0 real \&
[to prove property 8, we need to show if $f(x, y)$ is real \& even Imaginary part of $F(u, v)$ is 0]

$$
\begin{aligned}
& F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{\Delta y}{N}\right]} \\
= & \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}\left[f_{Y}(x, y)\right] e^{-j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right]} \\
= & \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}\left[f_{Y}(x, 4)\right] e^{-j 2 \pi\left(\frac{u x}{M}\right)} \cdot e^{-j 2 \pi\left(\frac{u y}{N}\right)} \\
= & \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}[\text { even] [even-jodd] [even-jodd] } \\
= & \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}[\text { even] [even.even - 2jeven.odd - odd.odd] }
\end{aligned}
$$

$$
\begin{gathered}
=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \text { [even.even] }-2 j \sum_{x=0}^{M-1} \sum_{4 ; 0}^{N-1} \text { [even .odd] } \\
=\sum_{x=0}^{M-1} \sum_{x=0}^{M-1}[\text { even.even] }
\end{gathered}
$$

- Real

The second teem is Imaginary componeny $=0$ according to $F^{*}(u, v)=F(-u,-v)$
4.6.5 Fourier spectrum \& p hare Angle

* 2.D DFT is complex in qenelal, we can expless in polar form

$$
F(u, v)=|F(u, v)| e^{j \phi(u, v)}
$$

where
the magnitude

$$
\begin{equation*}
|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2} \tag{416}
\end{equation*}
$$

as called Fourier spectrum
[freq spectrum]

$$
\begin{equation*}
\phi(u, v)=\arctan \left[\frac{I(u, v)}{R(u, v)}\right] \tag{17}
\end{equation*}
$$

is the phase angle [atan2 (Imag, Real)] \rightarrow MAT LAB

* Power spectrum

$$
\begin{align*}
P(u, v) & =|F(u, v)|^{2} \\
& =R^{2}(u, v)+I^{2}(u, v)
\end{align*}
$$

$R \rightarrow$ real Pal of $F(u, v)$
$I \rightarrow$ Imaginary - .,
$u=0,1,2, \ldots m-1$
$V=0,1,2 \cdots N-1$
$|F(u, v)|, \phi(u, v) \& P(u, v) \Rightarrow$ arrays of size $m \times N$.

* FT of a real fun is congugate Symmetric $F^{*}(u, v)=F(-u,-v)$ which implies that the spectrum has erensymmetry about the origin

$$
|F(u, v)|=|F(-u,-v)| \rightarrow 19
$$

* The phase ange exhibits the $\frac{104}{-}$ odd symmetry about the origin

$$
\begin{aligned}
& \phi(u, v)=-\phi(-u,-v) \\
& F(0,0)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)
\end{aligned}
$$

* which indicates the zero. freq teem is α to the average value of $f(x, y)$

$$
\begin{align*}
F(0,0) & =M N \cdot \frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \tag{21}\\
& =M N \bar{f}(x, y) \longrightarrow 21
\end{align*}
$$

$\bar{f} \Rightarrow$ avg value of f then

$$
|F(0,0)|=M N|\widetilde{F}(\gamma, 4)| \text {. }
$$

because the proportionality constant MN usually is large, IF $(0,0)$ I typically is the largest component of the spectrum dy a factor that can be several orders of magnitude larger than other term.

* $F(0,0) \Rightarrow d C$ component of transform

2. D convolution Theorem
circular

* 2.Drcon volution

$$
f(x, y) \circledast h(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N^{\prime}} f(m, n) h(x-m, y-n)
$$

for $x=0,1,2 \cdots M-1$

$$
Y=0,1,2 \ldots N-1
$$

* The $2-D$ convolution theorem is given dy the expressions

$$
f(x, y) \circledast h(x, y) \stackrel{L_{T}}{\Longrightarrow} F(u, v) \quad H(u, v)
$$

\& the conses

$$
f(x, y) h(x, y) \stackrel{F T}{\longrightarrow} F(u, v)(t) H(u, v)
$$

* $1-D$

$$
\begin{equation*}
f(x) \circledast h(x)=\sum_{m=0}^{M-1} f(x) h(x-m) \tag{425}
\end{equation*}
$$

* If we use DFT \& the convointhoorem, to Obtain the same result as in the left column of ting 4.28 , we must take into account the periodicity inherent in the expression of DFT.
* This is equivalent to convoluting the 2 peliodic function (4.28 (f) $t(9)$)
* The procedure is simper. Same.
* proceeding in the similar manner will yield the result shown in fig $4.28(j)$ which is obviously incorrect.
* Since we ale convoluting 2 periodic signals, the result itself is peliodir
* The closeness of the periods is such that they interfere with each other to cause wat wrap around error
* This problem can be solid by using ger padding method
* If we append Fe jews to both tuns so that they hare same length 4 denoted by P; $P \geq A+B-1$ 26
$2 . D$
- Let $f(x, y)$ \& $h(x, y)$ be 2 image arrays of sizes $A \times B$ \& $C \times D$ respectively.
* wraparound error in their convolution can be avoided by padding these functions with zen's as follows

$$
\begin{aligned}
& f_{p}(x, y)=\left\{\begin{array}{c}
f(x, 4) ; \\
0 \leq x \leq A-1 \\
0 \leq 4 \leq B-1 \\
0 ; \\
A \leq x \leq p \text { or } \\
B \leq 4 \leq a
\end{array}\right\} \text { 2, } \\
& h_{p}(x, y)=\left\{\begin{array}{ccc}
h(x, y) ; & 0 \leq x \leq C-1 \& \quad 0 \leq \varphi \leq D-1 \\
0 ; & c \leq x \leq p \text { or } \\
D \leq \varphi \leq C
\end{array}\right.
\end{aligned}
$$

with

$$
\begin{array}{rl}
P & \geq A+C-1 \\
4 \quad Q & 2 g \tag{30}\\
4+D-1 & -30
\end{array}
$$

b The resulting padded images are of sine $p \times Q$. If both arrays are of the Came size ' MXN, then we sequit

$$
\downarrow
$$

$$
\begin{gather*}
p \geq 2 m-1 \\
4 C \geq 2 N-1
\end{gather*}
$$

* If one or both of the funds of 4.28 @a (5) were not sew at the end of the interval, then a discontinuity would be created when Jews were appended to the fut to eliminate wraparound ensor
* This is analogous to xly a fun by a box, which in the freq domain would imply convaln of original transform with a sine fun.
* This would create frequency leakax caused by high freq components of sincfun.
* This produces a blocky effect on
* This can be reduced, by cling the max
sampled fun by another fun that tapers smoothly to near sew at bothends of the sampled record to dapen dampen the sharp transit (high freq coup) of the box.
* This approach is windowing on apodizing
(1) complete the linear convolution bet

$$
x[m, n]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { + } h[m, n]=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]
$$

tho' matrix method
(1) size of

$$
\begin{aligned}
& x[m, n]=M_{1} \times N_{1}=2 \times 2 \\
& h[m, n]=M_{2} \times N_{2}=2 \times 2
\end{aligned}
$$

\therefore convoluted matrix six
will be $Y[M, N]=M_{3} \times N_{3}$

$$
\begin{aligned}
& M_{3}=M_{1}+M_{2}-1=2+2-1=3 \\
& N_{3}=N_{1}+N_{2}-1=2+2-1 \\
& -y[m, n]=3 \times 3
\end{aligned}
$$

(2) The block matrix
\rightarrow no of block matrix depends on the no of rows of $x[m, n]$

* In this care $x[m, n]$ has 2 rows $\therefore 0$ no of block matrix is 2
HO_{2} \& H_{1}
Mo of zens to be appended $=$ no of column in Ho in $h[m, n]$ -1
$x[m, n]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \rightarrow$ used to form H_{0}
(3) Stejls in formation of tocte matrix Ho
(1) Ist element is intelted in 4_{0}

$$
\begin{aligned}
& H_{0}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad \text { only one zero is } \\
& \text { inselted as } \\
& \text { no of zens }=\text { no of columns in } h[m-n]-1 \\
& 2-1=1
\end{aligned}
$$

(2) 2 no elen

$$
H_{0}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

(3) $H_{0}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 2\end{array}\right]$
clement is sniffer
(3) HI

$$
H_{1}=\left[\begin{array}{ll}
3 & 0 \\
4 & 3 \\
0 & 4
\end{array}\right]
$$

(3) steps in the formation of block Toeplit 2 matrin
no of zews to be appended in is

$$
=\text { no of rous of } h[m, n]-1
$$

$$
\begin{aligned}
& \text { (6) } \\
& \begin{array}{l}
A=\left[\begin{array}{cc}
H 0, & 0 \\
H, & H 0 \\
0, & H 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
3 & 0 & 1 & 0 \\
4 & 3 & 2 & 1 \\
0 & 4 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & 0 & 4 & 3 \\
0 & 0 & 0 & 4
\end{array}\right.
\end{array} \\
& Y(m, n):\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
3 & 0 & 1 & 0 \\
4 & 3 & 2 & 1 \\
0 & 4 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & 0 & 4 & 3 \\
0 & 0 & 0 & 4
\end{array}\right] x \\
& \left.\begin{array}{c}
5 \\
40 \\
0
\end{array}\right]=\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]=\left[\begin{array}{c}
5 \\
16 \\
12 \\
22 \\
60 \\
40 \\
21 \\
52 \\
32 \\
32
\end{array}\right]
\end{aligned}
$$

(2) circular convolution

$$
x[m, n]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+h[m, n]=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]
$$

(1) $H_{0}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] \quad H_{1}=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$
(2) $A=\left[\begin{array}{lll}H 0 & H 1 \\ H_{1} & 40\end{array}\right]=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { (3) } \\
& y=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 21
\end{array}\right] \times\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]=\left[\begin{array}{l}
70 \\
68 \\
62 \\
60
\end{array}\right] \\
& y[m, n]=\left[\begin{array}{ll}
70 & 68 \\
62 & 60
\end{array}\right]
\end{aligned}
$$

Expression(s)

1) Discrete Fourier
transform (DFT)
of $f(x, y)$
2) Inverse discrete

Fourier transform
(IDFT) of $F(u, v)$
3) Polar representation
4) Spectrum
5) Phase angle
6) Power spectrum
7) Average value

$$
F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u x / M+v y / N)}
$$

$$
f(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi(u x / M+v y / N)}
$$

$$
F(u, v)=|F(u, v)| e^{j \phi(u, v)}
$$

$$
|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}
$$

$$
R=\operatorname{Real}(F) ; \quad I=\operatorname{Imag}(F)
$$

$$
\phi(u, v)=\tan ^{-1}\left[\frac{I(u, v)}{R(u, v)}\right]
$$

$$
P(u, v)=|F(u, v)|^{2}
$$

$$
\bar{f}(x, y)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)=\frac{1}{M N} F(0,0)
$$

Itering in the Frequency Domain

Name
Expression(s)
8) Periodicity (k_{1} and k_{2} are integers)
9) Convolution
10) Correlation
11) Separability
12) Obtaining the inverse Fourier transform using a forward transform algorithm.

$$
\left.\left.\begin{array}{rl}
F(u, v) & =F\left(u+k_{1} M, v\right)=F\left(u, v+k_{2} N\right) \\
& =F\left(u+k_{1} M, v+k_{2} N\right) \\
f(x, y) & =f\left(x+k_{1} M, y\right)=f\left(x, y+k_{2} N\right) \\
& =f\left(x+k_{1} M, y+k_{2} N\right) \\
f(x, y) \nLeftarrow h(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x-m, y-n) \\
f(x, y) & \approx h(x, y)
\end{array}\right) \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^{*}(m, n) h(x+m, y+n)\right) ~ l
$$

The 2-D DFT can be computed by computing 1-D DFT transforms along the rows (columns) of the image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.1.

$$
M N f^{*}(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^{*}(u, v) e^{-j 2 \pi(u x / M+v y / N)}
$$

This equation indicates that inputting $F^{*}(u, v)$ into an algorithm that computes the forward transform (right side of above equation) yields $M N f^{*}(x, y)$. Taking the complex conjugate and dividing by $M N$ gives the desired inverse. See Section 4.11.2.

Table 4.3 summarizes some important DFT pairs. Although our focus is on discrete functions, the last two entries in the table are Fourier transform pairs that can be derived only for continuous variables (note the use of continuous variable notation). We include them here because, with proper interpretation, they are quite useful in digital image processing. The differentiation pair can

Name

DFT Pairs

1) Symmetry properties
2) Linearity
3) Translation (general)
4) Translation to center of the frequency rectangle, (M/2,N/2)
5) Rotation
6) Convolution theorem ${ }^{\dagger}$

$$
\begin{aligned}
& f\left(r, \theta+\theta_{0}\right) \Leftrightarrow F\left(\omega, \varphi+\theta_{0}\right) \\
& x=r \cos \theta \quad y=r \sin \theta \quad u=\omega \cos \varphi \quad v=\omega \sin \varphi
\end{aligned}
$$

See Table 4.1
$a f_{1}(x, y)+b f_{2}(x, y) \Leftrightarrow a F_{1}(u, v)+b F_{2}(u, v)$
$f(x, y) e^{j 2 \pi\left(u_{0} x / M+v_{0} y / N\right)} \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)$
$f\left(x-x_{0}, y-y_{0}\right) \Leftrightarrow F(u, v) e^{-j 2 \pi\left(u x_{d} / M+v y_{d} / N\right)}$
$f(x, y)(-1)^{x+y} \Leftrightarrow F(u-M / 2, v-N / 2)$
$f(x-M / 2, y-N / 2) \Leftrightarrow F(u, v)(-1)^{u+v}$
$f(x, y) \star h(x, y) \Leftrightarrow F(u, v) H(u, v)$
$f(x, y) h(x, y) \Leftrightarrow F(u, v) \star H(u, v)$
Name

DFT Pairs

7) Correlation theorem ${ }^{\dagger}$

$$
f(x, y) \stackrel{\text { s }}{ } h(x, y) \Leftrightarrow F^{*}(u, v) H(u, v)
$$

8) Discrete unit $\quad \delta(x, y) \Leftrightarrow 1$
impulse
9) Rectangle $\quad \operatorname{rect}[a, b] \Leftrightarrow a b \frac{\sin (\pi u a)}{(\pi u a)} \frac{\sin (\pi v b)}{(\pi v b)} e^{-j \pi(u a+v b)}$
10) Sine

$$
\sin \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow
$$

$$
j \frac{1}{2}\left[\delta\left(u+M u_{0}, v+N v_{0}\right)-\delta\left(u-M u_{0}, v-N v_{0}\right)\right]
$$

11) Cosine

$$
\begin{aligned}
& \cos \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow \\
& \quad \frac{1}{2}\left[\delta\left(u+M u_{0}, v+N v_{0}\right)+\delta\left(u-M u_{0}, v-N v_{0}\right)\right]
\end{aligned}
$$

The following Fourier transform pairs are derivable only for continuous variables, denoted as before by t and z for spatial variables and by μ and ν for frequency variables. These results can be used for DFT work by sampling the continuous forms.
12) Differentiation

$$
\left(\frac{\partial}{\partial t}\right)^{m}\left(\frac{\partial}{\partial z}\right)^{n} f(t, z) \Leftrightarrow(j 2 \pi \mu)^{m}(j 2 \pi \nu)^{n} F(\mu, \nu)
$$

(The expressions
$\begin{aligned} & \text { on the right } \\ & \text { assume that }\end{aligned} \quad \frac{\partial^{m} f(t, z)}{\partial t^{m}} \Leftrightarrow(j 2 \pi \mu)^{m} F(\mu, \nu) ; \frac{\partial^{n} f(t, z)}{\partial z^{n}} \Leftrightarrow(j 2 \pi \nu)^{n} F(\mu, \nu)$ $f(\pm \infty, \pm \infty)=0$.
13) Gaussian $\quad A 2 \pi \sigma^{2} e^{-2 \pi^{2} \sigma^{2}\left(r^{2}+z^{2}\right)} \Leftrightarrow A e^{-\left(\mu^{2}+\nu^{2}\right) / 2 \sigma^{2}}$ (A is a constant)
${ }^{1}$ Assumes that the functions have been extended by zero padding. Convolution and correlation ary associative, commutative, and distributive.
be used to derive the frequency-domain eauivalent of the Laplacian defined in

Understanding the image in Fourier Domain

* DFT tells us what frequencies are present in the image \& their relative strengths.
* Frequency is directly related to the rate of change. 0° we can associate DFT with patterns of intensity variations in the image.
* Few observations $u(m, n)=f(x, y)$

$$
u(k, u)=F(u, v)
$$

(i) $\begin{aligned} & u=V=0 \text { is a } D C \text { component (zeno fra) } \\ & x=4=0\end{aligned}$) $x=4=0$
(ii) Neal the origin $(x=y=0)$ of fled space, low frequencies exist which correspond to slowly varying components in the Imare es. background in any image is smooth grey-lerel variations
(ii) As we move away from origin, we encounter teems in freq space at high freqis. [faster 4 baster grey level variation in the image]
Edges of objects \& Other components (noise) Edges of characresixd by abrupt Changes
of an images are in grey level
in
es. sudden change in grey level is boundary of a petal in an mare

* TO avoid problems with displaying complex -valued transform $F(u, v)$ of an image $f(x, y)$, a common approach is to display only the magnitude \& Ignon the phase of $F(u, v)$.
* origin of the image is shifted to image Centre

Before centralization

after centralization

* Apter shifting the origin to center of image, lovestfleqcomef are at centre of the pres as we go away from centre

472 Frequen
H.7 The BASICS of Filtering is frequency domain
[Image enhancement in treqdomain: MoBasic properties of the domain 4. 4 b oulc seers of filtering in tues 4.5 of viputa)
4.7.1 Additional characteristics of Heed domain Let us consider the 2.D DFT eq 4

$$
F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right)}
$$

(*) each term of $F(u, v)$ contains all values of $f(x, 4)$ modified by the values of exponential terms
(3) some qenelal ρ tatements can be made about the relationship bed the freq component of FT \& spatial featull of an 1 mare]
(*) Frequency is directly related to spatial rates of change of intensity variations in an image
() The slowest varying the comp onent $(u=v=0)$ is proportional to the average intensity of an image.
(*) As we move away from the origin of the transform, the low frequencies correspond Ho the slowly Valying intensity components of an image

* As we more further away from the origin the higher frequencies begin to correspond to faster \& faster intensity changes in the image [edges of objects \& other componems of image chavactivied by abrupt changes in intensis?
- Filtering techniques in freq domain are based on modifying the FT to achieve a specific objective of then computing the IDFT to get back to the image domain
* $F(u, v)=\mid F u, v) \mid e^{j \phi(u, v)}$

Wile the 2 components of DFT are magnitude (spectrum) \& the phase angle.

* Visual analysis of phase component is not very useful.

Frequency Domain filteling fundamentals

* Filtering in frequency domain tomtits of modifying the FT of an triage if then computing the singers Haw form to obtain the processed result.
x For a given digital image $f(x, y)$ of size $M \times N$, the basic filtering eq is of the form

$$
\begin{align*}
& \text { The form } \tag{1}\\
& g(x, y)=F^{-1}[H(u, v) F(u, v j]
\end{align*}
$$

where

$$
F^{-} \rightarrow I D F T
$$

$F(u, v) \longrightarrow$ DFT of ils image
$H(u, v) \rightarrow$ DFT of a filter Fu^{4}
$g(x, y) \rightarrow$ filtered op in age
the sire of all the functions are $M \times N$ same as ils imaqe

* The filter bun, modifies the transform of the ip image to yield a processed off $g(x, y)$.
* $H(u, v)$ is simplified comideraluly by wing fun's that are symmetric about theirconter.

FIGURE 4.5: Block diagram of filtering in frequency domain

* This is accomplished by xling the ils ina pe by $(-1)^{x+y}$ prior to computing is transforms $f(x)(-1)^{x} \Leftrightarrow F(u-m / 2)$ [shifts the data so that $F(0)$ is at the center of the intural $[0, m-1]$
$*$ ore of the simplest filters we can construes is a filter $H(u, V)$ is ' O ' at the center of the transform \& ' 1 ' elsecolele
* This filter would reject the determ \& p ass all v thee terms of $F(u, v)$.
* Wk $F(0,0)=M N \frac{1}{M N} \sum_{x=0}^{M-1} \sum_{4,0}^{N-1} f(x, 4)$

$$
=M N \tilde{f}(x, 4)
$$

$$
r_{f}=a v g \text { value }
$$

from above eq wk the $d c$-teem is responsible for the average intensity of an image. (bi g4.70)
\& so setting it to zero will reduce the avg intensity of the op image to 3 e to

- The image becomes much darker.
[an avg of zero \Rightarrow existence of the (intensity)

ab
FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum ol (a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materiak Research, McMaster University, Hamilton, Ontario, Canada.)

258
 Chapter 4
 Filtering in the Frequency Domain

FIGURE 4.30

Result of filtering the image in Fig. 4.29(a) by setting to 0 the term $F(M / 2, N / 2)$ in the Fourier transform.

+ low frequencies in the transform ale related to slowly valying intensity component in the image (wales of room/clouduss sky in an outdoor scene) \& high frequencies ar l caused try sharp transitions in intensity such as edqu finoile
* \therefore we would expect that a filter $H(u, v)$ that attenuates high Aeq's white passing low treqis (LPF] would blur an image.

While a filter with opposite property [high pass filter] would enhance sharp details but cause a reduction in constrast in the image $(4.31 \mathrm{fl})$ [HPF eliminate the d c Hem]

* eq (1) $\quad g(x, u)=F^{-1}[H(u, v), F(u, v)]$
product of 2 fun's in freq domain = convoln in spatial domain.
* If the functions in questions ale no padded we can expect wraparound error cdiscusbe) eallin

abc
def
FIGURE 4.31 Top row: frequency domain filters. Bottom row: corresponding filtered images obtained using Eq.(4.7-1). We used $a=0.85$ in (c) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig. 4.29(a).

FIGURE 4.32 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding. (c) Result of lowpass filtering with padding. Compare the light area of the vertical edges in (b) and (c).

* when we apply eq (1) without padding fig 4.72-(b) then the image when filtered using Gaussian LPF would result in blurring. \oint
* blurring is not uniform [top white edges are blunted but side white edges are not fig 4.92 (b)]
* so padding the ils image before applying eq (1) results in the filtered image where bluing is uniform.
* [padding the may en can create a uniform border around the puiodii sean big 4.1) 2 then convolving the blushing fun with the padded mosaic gives correct kist]
* padding is done in spatial domain
* eq (1) involve a filter that can be Specified either in spatial or freq domain
* the way to handle padding of 9 frequency domain filter is to construe the filter to be of the same size as the Image

a b
FIGURE 4.33 2-D image periodicity inherent in using the DFT. (a) Periodicity without image padding. (b) Periodicity after padding with 0s (black). The dashed areas in the center correspond to the image in Fig. 4.32(a). (The thin white lines in both images are superimposed for clarity; they are not part of the data.)
4.7 The Basics of Filtering in the Frequency Domain

$\begin{array}{ll}a & c \\ b & d\end{array}$

FIGURE 4.34

(a) Original filter specified in the (centered) frequency domain.
(b) Spatial representation obtained by computing the IDFT of (a). (c) Result of padding (b) to twice its length (note the discontinuities).
(d) Corresponding filter in the frequency domain obtained by computing the DFT of (c). Note the ringing caused by the discontinuities in (c). (The curves appear continuous because the points were joined to simplify visual analysis.)
compute I DFT of the filter to obtain the corresponding spatial filter.
1 pad that filter in spatial domain ? then compute its DFT to letwen to the Heq domain
fig $4.12 \cdot 4$

* to work with specified filter shaper in freq domain wo having to be concemed with truncation is uss
- one approach is to zevo-pad images \& then Create filters in freq domain to be of the same six when using the DFT
* Let us analyse the phon angle of the filtered transform
\therefore DFT is complex + can de
expressed as

$$
F(u, v)=R(u, v)+j I(u, v)
$$

Then eq (1)

$$
g(x, y)=F^{-1}\left[\begin{array}{l}
H(u, v) R(u, v) \\
+j H(u, v) I(u, v)] \tag{3}
\end{array}\right.
$$

* phase angle is not altered by filtering because $H(u, V)$ cancels out when the ratio of Imaginary \& real pact is formed $\left[\frac{I(u, v)}{R(u, v)}\right]$
* filters that affect real t imaginary parts equally 4 thus have no effect on the phase fare calud 3ero-phase-shiff filter.

$$
4.7 .3
$$

from multiplying the angle array in Eq. (T.0-10) oy 0.0 , wiuruut Changing

a b

FIGURE 4.35
(a) Image resulting from multiplying by 0.5 the phase angle in Eq. (4.6-15) and then computing the IDFT. (b) The result of multiplying the phase by 0.25 . The spectrum was not changed in either of the two cases.

4.7.3 Summary of Steps for Filtering in the Frequency Domain

The material in the previous two sections can be summarized as follows:

1. Given an input image $f(x, y)$ of size $M \times N$, obtain the padding parameters P and Q from Eqs. (4.6-31) and (4.6-32). Typically, we select $P=2 M$ and $Q=2 N$.
2. Form a padded image, $f_{p}(x, y)$, of size $P \times Q$ by appending the necessary number of zeros to $f(x, y)$.
3. Multiply $f_{p}(x, y)$ by $(-1)^{x+y}$ to center its transform.
4. Compute the DFT, $F(u, v)$, of the image from step 3 .
5. Generate a real, symmetric filter function, $H(u, v)$, of size $P \times Q$ with center at coordinates $(P / 2, Q / 2){ }^{\dagger}$ Form the product $G(u, v)=H(u, v) F(u, v)$ using array multiplication; that is, $G(i, k)=H(i, k) F(i, k)$.
6. Obtain the processed image:

$$
g_{p}(x, y)=\left\{\operatorname{real}\left[\mathcal{J}^{-1}[G(u, v)]\right]\right\}(-1)^{x+y}
$$

where the real part is selected in order to ignore parasitic complex components resulting from computational inaccuracies, and the subscript p indicates that we are dealing with padded arrays.
7. Obtain the final processed result, $g(x, y)$, by extracting the $M \times N$ region from the top, left quadrant of $g_{p}(x, y)$.
Figure 4.36 illustrates the preceding steps. The legend in the figure explains the source of each image. If it were enlarged, Fig. 4.36(c) would show black dots interleaved in the image because negative intensities are clipped to 0 for display. Note in Fig. 4.36(h) the characteristic dark border exhibited by lowpass filtered images processed using zero padding.
4.7.4 Cowespondence bet' filtering in spatial \& fit denterim.

* The link bowen filtering in the spatial of freq domains is the convolution Theorem
* WKT, filtering in freq domain is defined as dion of a filter function $\mathrm{H}(u, V)$ times $F(u, v)$, the FT of ils image
* Given a filter $H(u, V)$, if we want to find its equivalent representation in spatial domain

If Let $f(x, y)=\delta(x, y)$

$$
\text { FT of } \delta(x, y)=1
$$

$\therefore F(u, v)=1$, Then

$$
\text { wit } g(x, y)=F^{-1}[H(u, v) \text { Fu,v] }
$$

then filteled olp from above eq"

$$
\text { is } F^{-1}\{H(u, v)\} \text {. }
$$

* inverse FT of freq domain filter which is conesponding filter in the spatial elomain
* Given spatial filter, we can obtain its fer domain rep. by taking EF of the spatial filter

$$
h(x, y) \& \xrightarrow{R_{T}} H(H, V)
$$

impulse respond

If the quantities in eq (4) all finite, such filters ale called as FIR fils.

- one way to take advantage of the properties of both domains is to specify a filter in freq domain, compute its IDFT, \& then use the resulting full-size spatial filter as a guide for constructing smaller spatial filter masks
* Let us discuss, by using Gaussian filses, how freq domain filters can be used as guides for specifying the coefficients of some of the small masks [box fitter, weignedary, sober, roband laptacion)
* Filters based on Gaussian functions ale of particular interest, because, both the forward 4 inverse FT of 9 Gaussian fun's are real yaussian fun
$*$ Let $\mathrm{H}(u) \rightarrow$ denoted $1-D$ freq dentin Gaussian filter

$$
H(u)=A e^{-u^{2} / 2 \sigma^{2}}
$$

Where $\sigma=$ std deviation of Gaussian cure

* The corresponding filter in spatial domain is obtained br taking IFT of $H(4)$

$$
\begin{equation*}
h(x)=\sqrt{2 \pi} \cdot A e^{-2 \pi^{2} \sigma^{2} x^{L}} \longrightarrow \tag{6}
\end{equation*}
$$

* These eqnis all important becaur
(i) They are FT pair, both components of which ale Gaussian a real. \therefore no wed tole concerned with complex hob, Gaussianculres are intuitive of easy to manipulate
(ii) The fun behaves reciprocally. when $H(u)$ has a broad profile Clarqe value of σ), $h(x)$ has a na now profile \& viluersa
- if σ approaches infinity, then $H(u)$ tends to wards constant fuy \& $h(x)$ tends to wards an impulse which implies no filtering is freq \& spatial domains respectives
* big 4.37 (a) (b) shows plots of Gaussian LPF in freq domain \& the conesponding filter in spatial domains

4.37@A A 1-D Gaussian LPF in freq domain

* If ur e want to use the shape of $h(x)$ in fig 4.37 (6) as guide for specifying coefficients of a small spatial mask.
* the similarity bet' 2 filters is that all their values are the
* 0° we conclude that we can implemens LpFiltuing in spatial domain by using a mask with all positive coefficients - The nawower, the freq domain filter, the more it will attenuate the low freq's, resulting in pred blurring
* In spatial domain this means that a larger mask must be used to ${ }^{s} \mathrm{le}$ blurring
* Move complex filters can be constructed using the basic Gaussian fun of eq(5) $H(4)$
\& by we can construct a HpF as the difference of Gaumians

$$
H(u)=A e^{-u^{2} / 2 \sigma_{1}^{2}}-B e^{-u^{2} / 2 \sigma_{2}}{ }^{2}
$$

$$
\text { with } A \geq B \quad \& \sigma_{1}>\sigma_{2}
$$

* The corresponding filter in spatial domain

$$
h(x)=\sqrt{2 \pi} \sigma_{1} A e^{-2 \pi^{2} \sigma_{1}^{2} x}-\sqrt{2 \pi} \sigma_{2} \beta e^{-2 \pi^{2} \sigma_{2}^{2} x^{2}}
$$

* fig 4.37 (c) 4 (d) shows the plot

Laplacian

* The most important feature here is that $h(x)$ has a tvecenter teem with -vet teem on either side
* These 2 masics are sharpening filters which ace now HPF
* In spatial domain, filtering is implemented dy convolution dettilp Imau 4 filter
x convolution filtering with swall filter mask is preferred 08 of speed f eare of meplementation in Hlw
* But filteling is more intultive in fleq domain,
* Here filteeing is implemented dy xlion of FT of ilpimax $\&$ TF of a filter

$$
\begin{aligned}
& \xrightarrow{f(x, y)}>h(x, y) \rightarrow g(x, y) \xrightarrow{F(u, v)} H(u, v) \xrightarrow{G(u, v)} \\
& g(x, y)=f(x, y) * h(x, y) \stackrel{F}{\longleftrightarrow} \quad G(u, v)=F(u, v) \text {. } \\
& H(u, v) \\
& g(x, u)=F^{-1}[G(u, v)] \\
& =F^{-1}[F(u, v) \cdot h(u, v)] \\
& \text { Spatial } \\
& \text { fres } \\
& \text { filte }
\end{aligned}
$$

Homomorphic Filtering

* Homomorphir frittering is a freq domain phoidure to implore the appearance of an image by (a) Grey level range complession
(b) Contrast en hancement
* An Image $f(x, y)$ captured by cancer is formed dy multiplication of illumination \& reflectance
* Reflectance model is

$$
\begin{equation*}
f(x, y)=i(x, y) \cdot \gamma(x, y) \tag{1}
\end{equation*}
$$

where $f(x, y)=$ Grightuess of an image
$i(x, y)=$ illumination component
$r(x, y)=$ reflectance components

* some cases when the scene is not illuminate propels, or camera angle is not correct, some pact of the image appeal dak.
* in order to improve these tyres of images, reflectance $\&$ illumination has to be treated independent
(*) $i \rightarrow$ slowly varying $\Rightarrow 10$ of req component illumination changes "slowly" acres the scene, Thus it is related to low freq
(2) $r \rightarrow$ bast Varying \Rightarrow High freq component. surface refection changes 'sharply' achy the scene. Thus it is associated to high free

illuminati

Reflectance

reflectance model

* For image enhancement, illumination 4 reflectance have to be treated separately which is not possible in the domain as

$$
\begin{equation*}
F[f(x, y)] \neq F[j(x, y)] \cdot F[r(x, y)] \tag{2}
\end{equation*}
$$

* TO separate the reflectance 2 illumination component, Homomorphic filters are used
* The blocle dig is shown below

1. Take natural logarithm of ils imaore

$$
\begin{align*}
z(x, y) & =\ln [f(x, y)] \\
& =\ln [i(x, y) \cdot r(x, y)] \tag{3}\\
& =\ln [i(x, y)] \cdot \ln [r(x, y)]
\end{align*}
$$

2. FT on both side

$$
\begin{gathered}
F\{z(x, y)\}=F\{\ln [i(x, y)]\}+F\{\ln [r(x, u)]\} \\
z(u, v)=F_{i}(u, v)+F_{v}(u, v) \\
\text { here } z(u, v)=F\{z(u, v)\} \\
F_{i}(u, v)=F\{\ln [i(x, 4)]\} \\
F_{r}(u, v)=F\{\ln [r(x, 4)]\}
\end{gathered}
$$

3. Xly with filter $H(u, v)$ with eq (4)

$$
\begin{align*}
s(u, v)= & H(u, v) z(u, v) \\
= & H(u, v) F_{i}(u, v) \\
& +H(u, v) F_{r}(u, v)
\end{align*}
$$

4. The filtered image in spatial domain is taking IFT on both sick

$$
\begin{align*}
S(x, y)= & F^{-1}\{S(u, v)\} \\
= & F^{-1}\left\{H(u, v) F_{i}(u, v)\right\} \\
& +F^{-1}\{H(u, v) F r(u, v)\} \\
= & i^{\prime}(x, y)+\gamma^{\prime}(x, y)
\end{align*}
$$

where

$$
\left.\begin{array}{rl}
i^{\prime}(x, y) & =F^{-1}\left\{H(u, v) F_{i}(u, v)\right\} \rightarrow 8 \\
4 & \gamma^{\prime}(x, y) \tag{9}
\end{array}\right)=F^{-1}\left\{H(u, v) F_{\gamma}(u, v)\right\} \rightarrow \text { (9) }
$$

(3) Take inverse log transform

$$
\begin{align*}
g(x, 4) & =e^{S(x, 4)} \\
& =e^{j^{\prime}(x, 4)} \cdot e^{r^{\prime}(x, 4)} \\
& =i_{0}(x, 4) \cdot r_{0}(x, 4)
\end{align*}
$$

while $i_{0}(x, y)=e^{i^{\prime}(x, y)}$

$$
\begin{equation*}
\text { \& } \quad r_{0}(x, y)=e^{\gamma^{\prime}(x, y)} \tag{11}
\end{equation*}
$$

are illumination 4 reflectance components of the of p (p blessed) image

$$
g(x, y)=\text { enhanced image }
$$

* This method is based on a special cars of a class of systems known as homomorphic st stem.
* The homo morphic filter fun $H(u, v)$ is indicated in eq s.
* illumination component of an image is characterised dy slow spatial Vatiations while the reflectance component tends to vary abruptly, palticullakly at the junctions of dissimilar objects.
* The goal of monomorphic filteling is to suppress low frequencies anociated with ils image so that the net effect is enhacement.

* TU achieve the above mentioned goal, a filter has to be designed in such a wall that illumination component is supplersed 4 reflectance is enhanced as shown in abou D.P. P
* Low fleqis of FT of a log of an wage are associated with illumination o lug Hey's are associated with reflectance
* Although these are approximate anociation but can be used for image enhancement.
* Transfer fun is controlud in such a way that low then's are attenuated 2 high fleas are passed untouched as shown in dis (5).
\& fig (6) Shows the chis section of filter
* If parameters $\gamma_{L} \& \gamma_{H}$ ale chosen so that
$y_{L}<1 \Rightarrow$ tends to attenuate the contribution made by low freq's Cillumination)
\& $\gamma_{H}>1 \Rightarrow$ amplify the contribution made by high freq's (reflectang)
* The net result is simultaneous dynamic lange compression \& contrast enhancement
* using a slight h modified form of the Gaunsi an HPF yields to

$$
\begin{align*}
& \text { the Gaunsian HPF yiplas to } \tag{L}\\
& H(u, v):\left(\gamma_{H}-\gamma_{L} J\left[1-e^{-C\left[D^{2}(u, v) \mid D_{0}^{2}\right]}\right]\right.
\end{align*}
$$

IMAGE RESTORATION
5.1 A Model of Image degradation/Restoration process

* Restoration is the process of inverting a degradation using knowledge about its natule a model for
* Fig 5.1 below shows the degradation / restoration process.

$f(x, y)$ = original Image
$h(x, y)=$ degradation function H
$\eta(x, y)=$ additive noise teem.
$g(x, y)=$ degraded \& noisy image
$\eta(x, y)=$ degraded \& noisy image
$g(x, y)=$ estimate of the original image
$\hat{f}(x, y)=$ is Restored image
* The objective of restoration process is to estimate $\hat{f}(x, y)$ from the degraded version $g(x, y)$, when some knowledge of degradation function H ' \& noise ' η ' is these.
* The degraded image $g(x, 4)$ can we mathemati-
- cally expressed as

$$
g(x, y)=h(x, y) * f(x, y)+\eta(x, y)
$$

spatial domain

$$
\text { * } \Rightarrow \text { convoln. }
$$

* An equivalent freq domain representation

$$
\begin{array}{ll}
G(u, v)=H(u, v) F(u, v)+N(u, v) \\
G(u, v)=F[g(x, u)] ; & F(u, v)=F[f(x, y)] \\
H(u, v)=F[h(x, y)] ; & N(u, v)=F[\eta(x, y)]
\end{array}
$$

Thus $F(u, v)=H^{-1}(u, v) \cdot[G(u, v)-N(u, v)]$
1 Restored image can be obtained
by eq (3).

* The problems in implementing this eqnis
(1) The noise N is unknown only the statistical properties of noise can be known.
(2) The operation H is singular or ill posed It is very difficult to estimate H
15.2 Noise models
* The principal sources of noise in digital image arise during image acquisition and /or transmission
* The performance of imaging sens on is affected by a valitty of factors such as environmental conditions sun d during image acquisition \& dy the quality of the sensing element thenseler
* eff. When acquiring imacies with a CCD camera, light levels \& sensor temperature are major factors affecting the amount of noil in the resulting image.
* Images are corrupted during transmission due to interference in the channel used for trion. af. an image red using a wireless Now might be comupted as 9 result of lightning or other atmospheric disturbance
5.2.1 Spatial 2 frequency properties of noise spatial \& freq characteristics of noise ale as follows:
(1) Noise is assumed to be 'white noise! if, fourier spectrum of noise is constant
(2) Noise is assumed to be independent in spatial domain. Noise is uncorrelated with Image i ie, there is no correlation bet' pixel value of image \& value of noise components
* The spatial noise descriptor is the statistical behaviour of the intensity values in the noise comp onent
* Noise intensity is considered as a random variable characterized fry a certain probability density function (DDF)
* Frequency properties refer to the free content of noise in the Fourier sense eff when the Fourier spectrum of noise is constant, white noise.
5.2 .2 sone important Noise Probability Density functions
Let us discuss the most common PDF's found in image processing application
(1) Gaussian noise:.
* Gaussian noise models (normal noise, are used frequently in practice.
* The PDF of a Gaussian random variable ' z ' is given $b y$
* The PDF of a Gaussian random variable, ' z ' is given by

$$
P(z)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(z-\bar{z})^{2}}{2 \sigma^{2}}}
$$

where
$z=$ intensity value,
$\bar{z}=$ mean (average) value of z. (we can us ely μ)
$p(z) \quad \sigma=$ standard deviation

* The plot of thin fun is shown in dis (a).
* when z is clesuileto bye q, for of its value will be in the range $[(\bar{z}-\sigma),(\bar{z}+\sigma)]$ \& aboum 95% will be in the randal $[(\bar{z}-2 \sigma),(\bar{z}+2 \sigma)]$
* DFT of gaussian noise is another gaussian process. \therefore this property of gaussian noise makes it must ubtenly used noise model
* eft. where gaussian model is used ale electronic cats noise, sensor noise due to low illumination or high temp, poor illumination
(2) Rayleigh noise

* The PDF of Rayleigh noise is given by

$$
P(z)=\left\{\begin{array}{cc}
\frac{2}{b}(z-a) & e^{-(z-a)^{2}} \\
; & \text { for } z \geq a \\
0 ; & f<r z<9
\end{array}\right.
$$

* The mean 4 valiance of this density are given by

$$
\begin{align*}
& \bar{z}=a+\sqrt{\pi b / 4} \\
& 4 \sigma^{2}=\frac{b(4-\pi)}{4} \longrightarrow \tag{4}
\end{align*}
$$

* big (b) Shows the PDF of Rayleigh density
* rote that curve dust start from origin 4 is not symmetrical LRT centre of cure basic shape of
* The Rayleigh density is skewed to the right. $4 \therefore$ can be useful for approximating skewed histograms
(3) Erlang (Gamma) Noise

The PDF of Erlang noise is given $b y$

$$
p(z)=\left\{\begin{array}{cl}
\frac{a^{b} z-1}{(b-1)!} e^{-a z} ; & \text { for } z \geq 0 \tag{5}\\
0 ; & \text { for } z<0
\end{array},\right.
$$

$a \& b$ are the integers $a>0 \& b=$ treinteyer

$$
!\Rightarrow \text { factorial }
$$

* The mean \& variant of this density are given by

$$
\begin{align*}
\bar{z} & =\frac{b}{a} \tag{6}\\
\& \sigma^{2} & =\frac{b}{a^{2}}
\end{align*}
$$

* eq (5) is referred to as the gamma density, strictly speaking this is correct only when the denominator is the gamma fun $\Gamma(b)$.
* When the denominator is as shown, the density is more appropriately called the Erlang density
(4) Exponential noise

The PDF of exponential noise is giuendy

$$
p(z)=\left\{\begin{array}{cl}
a e^{-a z} ; & \text { for } z \geq 0 \\
0 ; & \text { for } z<0 \\
0>0 & \text {,he mean }
\end{array}\right.
$$

While $a>0$, The mean + variance of this density fun all

$$
\begin{align*}
\bar{z} & =\frac{1}{9} \tag{9}\\
\sigma^{2} & =\frac{1}{a^{2}}
\end{align*}
$$

this PDF is a special case of the
4 Erlang PDF, with $b=1 \quad \&$ shown in fir (d)

B uniform noise

* The PDF of uniform noise is given by

$$
p(z)=\left\{\begin{array}{cc}
\frac{1}{b-a} ; & \text { if } a \leq z \leq b \\
0 ; & \text { othelsik } \\
& \text { in }
\end{array}\right.
$$

* The mean of this density bun is giun bs

$$
\bar{z}=\frac{a+b}{2} \rightarrow 12
$$

4 its valiance by

$$
\begin{align*}
& \sigma^{2}=\frac{(b-a)^{2}}{12} \rightarrow \tag{13}\\
& \text { a reppers noise }
\end{align*}
$$

(b) Impulse (salt 4 pepper) noise

* The PDF of (bipolar) impulse noise is given dos

$$
p(z)= \begin{cases}P_{a} ; & \text { for } z=9 \tag{14}\\ P_{b} ; & \text { for } z=b \\ 0 ; & \text { other biff }\end{cases}
$$

y If $b>9$, intensity b will
appears as a light dot in the Image

* concessly, level a will appear like a dark dot
1 If either Pa_{a} or Pb_{b} is zero, the impulse noin is called unipolar
* If neither probability is zeno, If they are approximately equal, impulse noil value will resemble salt+repper granules randomly distributed over the inane
* for this reason, bipolar impulse noise is also called as salt \& pepper noise
* पenclally a $+b$ values are saturated (vely high or very low value). resulting in + re impulses being white (Salt) \& negative impulses being black (pepper)
* If pa= of only Pb exists ie, called pepper noise as only black dots are visible as noise - Salt noise' as only whit h dots are visible on the image as noik
* Impulse noise occurs when quiche transition happen, such as faulty * Noil parameters small flat area of noisy based on his has a probability
imax
* each pixel in an image being contaminated by i max of $p / 2$ (ocpCi) vil) or a black dot 0 either white dot (salt) or ar (paper)

320 Chapter 5 ili Image Restoration and Reconstruction

$\frac{\mathrm{a}}{\mathrm{b}}$

FIGURE 5.5
(a) Image corrupted by sinusoidal noise.
(b) Spectrum (each pair of conjugate impulses corresponds to one sine wave). (Original image courtesy of NASA.)

FIGURE 5.3 Test pattern used to illustrate the characteristics of the noise PDFs shown in Fig. 5.2.

FiGure 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt-an Pepper noise to the image in Fig. 5.3.
5.2. Reriodiu Noise

* Periodic noise in an image arises typically from electrical or electromechanical interference dulling image acquisition
* This is the only type of spatially dependent noise
* Periodic noise can be reduced significantly via freq domain filtering * A strong reriodicnoise can de seen in Frequency domain as equi spaced dots at a particular radius around the centre (origin) of the spectrum
* Fores If the image is severely corrupted by (spatial) sinusoidal noise of various prequencia
- The FT of a pure sinusoid is a pair of conjugate impulses located at the conjugate Hen's of the sine wave
* Thus if the amplitude of a sine ware in the spatial domain is strong, then we would expect to see a pair of impulse fureach sine wave in the spectrum.
5.2.4 Estimation of Noise palameterer
* The parameters of periodic noise are estimated by inspection of the Fourier spectrum of the in rage.
* periodic noise tends to produce Aeq spikes that often can be detected by visual
* Another approach is to attempt to infers analysis. the periodicity of noise components directly from the image, this is possible for simplistic cares.
* Automated analysis is possible in situations in which the noise spikes all either exceptionally pronounced or when knowledge is available about the general location of the freq components of the interference
* The parameters of noise $P D F$'s may be known partially from sensor specification but it is often required to estimate them f* for a particular imaging arrangement
\rightarrow If the imaging system is available, then one simple way to study the characterstics ob system noise is to capture, a set of images of "flat" environment and estimate the parameters of the PDF from small patches of reasonably constant background Intensity.
* The simplest use of the data from the image strips is for calculating the wean \& Variance of intensity levels.
* Consider a strip (subinage) denoted by "S' \&
Let $P_{s}\left(z_{i}\right) ;$ where $i=0,1,2 \ldots L-1$, denote the probability estimates (normalized histogram values) of the intensities of the pixel ins. where $L=\frac{n o}{-}$ of possible intensities in the entice image.
* The mean \& valiance of the pixels is' can be calculated as

$$
\begin{aligned}
\bar{z} & =\sum_{i=0}^{L-1} z_{i} P_{S}\left(z_{i}\right)
\end{aligned} \quad \rightarrow 15
$$

* The shape of the histogram identifies the closet closest PDF match
* If the shape is approximately Gaussian, then mean $\&$ variance ale need.
* for other shapes, mean 4 variance are used to solve for the parameter a \& b * for impulse noise, the heights of the peaks conesponding to blacle \& white pixels are the estimates of $\mathrm{pa}_{217} \mathrm{~Pa}$ Pb.

53 Restoration in the presence of Noise only - spatial filtelling

* When only degradation present in image is noise then

$$
\begin{align*}
g(x, y) & =f(x, y)+\eta(x, y) \tag{1}\\
+G(u, v) & =F(u, v)+N(u, v)
\end{align*}
$$

- noise tell is unknown so subtracting them from $g(x, y)$ or $G(u, v)$ is,

$$
\begin{aligned}
& \text { em from } g(x, y) \text { or } G(x, y)
\end{aligned}
$$ realistic option.

* Thus spatial filtering is used when additice random noise is present

Noisy SH
Filteling \rightarrow Denoised image \hat{f}
mean filters
(i) Arithmetic mean filter

* simplest form of mean filter
* $s_{x y} \Rightarrow$ set of coordinates in a rectangular sub image window (neighborhood) of size $m \times n$, unteled at a point x, y.
* mean filter computes avg value of the corrupted image $g(x, y)$ in the area defined by $s_{x, y}$

$$
\begin{gathered}
* f^{\prime}(x, y)=\frac{1}{m n} \sum_{(x, t, y)} g(s, t) \longrightarrow \text { (1) }
\end{gathered}
$$

* such a filter smooths local variations in an image thus reducing noise 2 introducing blurring.
* This filter is well suited for random noise like Gaussian, uniform noise

Thus new value
at (x, y) in image $=$ mean $\{\mathrm{g}(\mathrm{s}, \mathrm{t})\}=\frac{1}{9}[30+10+20+10+250+25+20$ 6.12

$$
+25+3]=46.7 \approx 47
$$

30	10	20				
10	250	25				
20	25	30	\longrightarrow	x	x	\times
:---:	:---:	:---:				
x	$46.7 \approx 47$	\times				
\times	\times	\times				

FIGURE 6.12: Example of mean filtering

Example 6.2

Show effect of 3×3 mean filter on a simple image in fig 6.13 (a) and (c)

Solution:

0	0	0	0	0
0	0	0	1	1
0	0	1	1	1
0	0	1	20	1
0	0	1	1	1

(a)

$\xrightarrow[\text { Mean }]{ } \xrightarrow{ } \quad$| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | $1 / 9$ | $3 / 9$ | $5 / 9$ | |
| | $2 / 9$ | $24 / 9$ | $27 / 9$ | |
| | $3 / 9$ | $25 / 9$ | $28 / 9$ | |
| | | | | |

(b)

b. Geometric Mean Filter

Restored image by a geometric mean filter is given by

$$
\begin{equation*}
\hat{f}(x, y)=\left[\prod_{(s, t) \in s_{n}} g(s, t)\right]^{1 / m n} \tag{6.20}
\end{equation*}
$$

Thus new value at (x, y) in image $6.15=\underset{s, t \in S x y}{\text { Geometric mean }[\mathrm{g}(\mathrm{s}, \mathrm{t})]}$

$$
\begin{aligned}
= & {[30 \times 10 \times 20 \times 10 \times 250 \times 25 \times 20} \\
& \times 25 \times 30] 1 / 81=1.436
\end{aligned}
$$

30	10	20
10	250	25
20	25	30

\longrightarrow| x | x | x |
| :---: | :---: | :---: |
| x | 1.436 | x |
| x | x | x |

FIGURE 6.15: Example of geometric mean filter
Geometric mean filter achieves less smoothing as compared to the arithmetic mean filters but it preserves more details.

c. Harmonic Mean Filter

Harmonic mean filtered image is given by,

$$
\begin{equation*}
\hat{f}(x, y)=\frac{m n}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}} \tag{6.21}
\end{equation*}
$$

Thus new value at (x, y) in image $6.16=\underset{s, t \in S^{y}}{\text { Harmonic mean }[g(s, t)]}$

$$
=\frac{9}{\frac{1}{30}+\frac{1}{10}+\frac{1}{20}+\frac{1}{10}+\frac{1}{250}+\frac{1}{25}+\frac{1}{20}+\frac{1}{25}+\frac{1}{30}}
$$

30	10	20
10	250	25
20	25	30

$\xrightarrow[\text { Mean filter }]{\text { Harmonic }}$

x	x	x
x	4.36	\times
x	\times	x

FiGURE 6.16: Example of Harmonic mean filter

492 Digitol Image Processing

Harmonic mean works well for salt noise and gaussian noise, but fails for pepper noike

d. Contra Harmonic Mean Filter

Restored image from contra harmonic filter is

$$
\begin{equation*}
\hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{y}} g(s, t)^{Q+1}}{\sum_{(s, t) \in S_{n}} g(s, t)^{Q}} \tag{6.22}
\end{equation*}
$$

Here, Q is the order of the filter. This filter reduces salt \& pepper (impulse) noise. For $Q>0$, it eliminatés pepper noise.
For $Q<0$, it eliminates salt noise.

$$
\text { For } Q=0, \hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{x}} g(s, t)^{1}}{\sum_{(s, t) \in S_{x y}} 1}=\frac{\sum_{(s, t) \in S_{x y}} g(s, t)^{1}}{m n}=\text { mean filter }
$$

Thus for $Q=0$, contra-harmonic filter becomes arithmetic mean filter.

$$
\text { For } \begin{aligned}
Q=-1, \hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{n}} g(s, t)^{0}}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}} & =\frac{m n}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}} \\
& =\text { Harmonic mean filter }
\end{aligned}
$$

Thus, for $Q=-1$, it becomes harmonic mean filter. Q has to be chosen properly. Wrong Q gives disastrous results.

Harmonic mean works well for salt noise and gaussian noise, but fails for pepper noive.

d. Contra Harmonic Mean Filter

Restored image from contra harmonic filter is

$$
\begin{equation*}
\hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{\eta}} g(s, t)^{Q+1}}{\sum_{(s, t) \in S_{\eta}} g(s, t)^{Q}} \tag{6.22}
\end{equation*}
$$

Here, Q is the order of the filter. This filter reduces salt \& pepper (impulse) noise. For $Q>0$, it eliminatés pepper noise.
For $Q<0$, it eliminates salt noise.

$$
\text { For } Q=0, \hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{n}} g(s, t)^{1}}{\sum_{(s, t) \in S_{n}} 1}=\frac{\sum_{(s, t) \in S_{\eta}} g(s, t)^{1}}{m n}=\text { mean filter }
$$

Thus for $Q=0$, contra-harmonic filter becomes arithmetic mean filter.

$$
\text { For } \begin{aligned}
& Q=-1, \hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{n}} g(s, t)^{0}}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}}=\frac{m n}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}} \\
&=\text { Harmonic mean filter }
\end{aligned}
$$

Thus, for $Q=-1$, it becomes harmonic mean filter. Q has to be chosen properly. Wrong Q gives disastrous results.

6.5.2 Order Statistics Filter

Order statistics filter are non-linear spatial filters. Its response is based on ordering the pixels contained in sub - image area. Filter is implemented by replacing the centre pixel value with the value determined by the ranking result. As shown in table 6.2 , four types of order statistics filters are discussed here.

a. Median Filter

Median filter replaces the pixel value by the median of the pixel values in the neighbourhood of the centre pixel (x, y). The filtered image is given by

$$
\begin{equation*}
\hat{f}(x, y)=\operatorname{mediax}_{(s, t) \in s_{n}}\{g(s, t)\} \tag{}
\end{equation*}
$$

Fig 6.17 shows the procedure of applying 3×3 median filter on an image. As impulse
${ }_{n}$ oise $^{\text {is }}$ appears as black (minimum) or white (maximum) dots, taking median effectively suppresses the noise. It is clear from example 6.3 , fig $6.18(\mathrm{a}, \mathrm{b})$ that if noise strength is low in noisy image, output is completely clean. But if noise strength is more (more number of noisy pixels in the image), output is not completely noise free as can be seen in fig 6.18 (c,d)

Thus, median filter provides excellent results for salt and pepper noise with considerably less blurring than linear smoothing filter of the same size. These filters are very effective for both bipolar and unipolar noise. But, for higher noise strength, it affects clean pixels as well and a noticeable edge blurring exists after median filtering.

FIGURE 6.17: Example of median filtering

Example 6.3

Example 6.3 show the effect of 3×3 median filter on a simple image in fig 6.18 (a and c).

Solution

128	128	128	128	128
128	0	128	128	128
128	128	128	128	128
128	128	128	128	128
128	128	128	128	128

FIGURE 6.18: (a) Input image

494 Digital Image Processing
$\left.\begin{array}{|c|c|c|c|c|}\hline 128 & 128 & 128 & 0 & 128 \\ \hline 128 & 0 & 128 & 128 & 128 \\ \hline 0 & 0 & 255 & 255 & 255 \\ \hline 0 & 0 & 128 & 255 & 0 \\ \hline\end{array} \quad \begin{array}{c}\text { Median } \\ \text { filter }\end{array}\right)$

FIGURE 6.18: (c) Input image
FIGURE 6.18: (d) Outputimage

FIGURE 6.18: Example of median filter

FIGURE 6.19: (a) Original image

FIGURE 6.19: (c) Filtered image with mean filter

FIGURE 6.19: (b) Noisy image

FIGURE 6.19: (d) Filtered image with median filter

FIGURE 6.19: (a) Input image (b) noisy image, image filtered by (c) mean (d) Median filter

Matlab Ex 6.4

Explanation

Salt and pepper noise with density of 0.3 is added to an image. The noisy image $1 f_{q}$ 6.20 (a)) is filtered using $3 \times 3,5 \times 5$ and 7×7, median filter. The results in fig 6.20 b, c, d show that 3×3 median filter is unable to remove the noise completely as the noise density is high. But 5×5 and 7×7 median filters remove noise completely bur some distortions are seen specially in fig (d).

FIGURE 6.20: (a) Noisy image

FIGURE 6.20: (b) Filtered image with 3×3
median filter

FIGURE 6.20: (c) Filtered image with 5×5 median filter

FIGURE 6.20: (d) Filtered image with 7×7 median filter

FIGURE 6.20: (a) Noisy image, image filtered by median filter of size (b) 3×3 (c) 5×5 (d) 7×7

b. Max and Min Filter

The restored image from a max filter is given by

$$
\begin{equation*}
\hat{f}(x, y)=\max _{(s, t) \in S_{n}}\{g(s, t)\} \tag{6.23}
\end{equation*}
$$ (x, y) in fig 6.21

$$
=250
$$

30	10	20
10	250	25
20	25	30

$\xrightarrow[\text { Max }]{\text { filter }}$| x | x | x |
| :--- | :--- | :--- |
| x | 250 | x |
| x | x | x |

FIGURE 6.21: Example of max filter

Example 6.3

Show the effect of 3×3 max on image in fig 6.22 (a)

Solution

(a) Input image
(b) Output image

FIGURE 6.22: Example of max filter
This filter is useful in finding the brightest points in an image, therefore it is effective against pepper noise. Problem occurs when both salt \& pepper noise is there and there are more noisy pixels. In this case, even non-noisy pixel values are also replaced by salt noise values. As it is clear from example 6.3, 128 pixel value is non noisy.
$0 \rightarrow$ pixel affected by pepper noise, $255 \rightarrow$ pixel affected by salt noise
After the application of filter in fig 6.22 (b), only the first row values are non-noist, other rows have noise values (255).

Image restored from a min filter is given by

$$
\begin{equation*}
\hat{f}(x, y)=\min _{(s, t) \in s_{y}}\{g(s, t)\} \tag{6.24}
\end{equation*}
$$

Thus new value at $=\min \{\mathrm{g}(\mathrm{s}, \mathrm{t})\}$
(x, y) in fig 6.23 ${ }_{s, t \in S_{r}} \lg ^{(\mathrm{s}, \mathrm{t})\}}=\min \{30,10,20,10,250,25,20,25,30$

$$
=10
$$

30	10	20
10	250	25
20	25	30

$\xrightarrow[\text { Filter }]{\min } \quad$| x | x | x |
| :--- | :--- | :--- |
| x | 10 | x |
| x | x | x |

FIGURE 6.23: Example of min filter

Example 6.4

Show the effect of $3 \times 3 \mathrm{~min}$ filter on image in fig 6.24 (a).

FIGURE 6.24: Example of min filter
In the above example $6.4,128$ pixel is non noisy value
$255 \rightarrow$ pixel affected by salt noise, $0 \rightarrow$ pixel affected by pepper noise
In the output Fig 6.24 (b) first row has non noisy pixel values, where as $2^{\text {nd }}$ and $3^{\text {rd }}$ row has pepper noise values a output.

This filter is useful in finding darkest points in an image, it is effective against only salt noise. The problem occurs when both salt and pepper noise is present in an the image, even non-noisy pixel values are replaced by pepper noise.

C. Midpoint Filter

This filter computes the mid point of maximum and minimum values of intensities.

$$
\begin{equation*}
\hat{f}(x, y)=\frac{1}{2}\left[\max _{(s, t) \in s_{\eta}}\{g(s, t)\}+\min _{(s, t) \in s_{v}}\{g(s, t)\}\right] \tag{6.25}
\end{equation*}
$$

The new value at (\mathbf{x}, y) in image in fig $6.25=\frac{1}{2}[\max \{g(s, t)\}+\min \{g(s, t)\}]$

$$
=\frac{1}{2}[250+10]=130
$$

30	10	20
10	250	25
20	25	30

Mid point

(a)

FiGURE 6.25: Example of mid point filter

This filter is a combination of order statistics and averaging. It works well for Gaussian uniform noise.

Example 6.5

Show the effect of 3×3 mid point filter on an image in fig 6.26 (a)

0	1	2	3	4
5	6	7	8	9
5	5	5	9	9
5	5	5	9	9
5	5	5	9	9

(a) Input image
mid point \longrightarrow filter

	3.5	3	5.5	
	6	7	7	
	5	7	8	

(b) Output image

FIGURE 6.26: Example of mid point filter

Salt and pepper noise is added to an input image shown in fig 6.27 (a). Median filter is implemented by ordfilt2 command by choosing 5 (center value in $3 \times 3=9$ pixels). Max filter is implemented by choosing $9^{\text {dh }}$ (highest value in 9 pixel) and min filter is implemented by choosing 1 (minimum value in 9 pixels). Mid point filter is implemented by taking average of min and max filter values. As it is clear from the output (fig 6.27 (c)) that, median filter completely removes salt and pepper noise. But max filter fig (d) removes only pepper noise (black dots) but salt noise remains and same distortions in terms of salt noise is added in the output (fig d). Similarly, min filter removes only salt noise (white dots) completely but pepper noise remains and same distortions in terms of pepper noise is added in the output (fig e). In case of mid point filter, noise values and other pixel values are also replaced by average value(125). Therefore lot of grey pixels are seen in the image (fig f).

FIGURE 6.27: (a) Original image

FIGURE 6.27: (b) Noisy imgae

FIGURE 6.27: (c) Filtered image using median filter

FIGURE 6.27: (e) Filtered image using min filter

FIGURE 6.27: (d) Filtered image using max filter

FIGURE 6.27: (f) Filtered image using mid point filter

FIGURE 6.27: Original image (b) noisy image, filtered image using (c) median (d) max (o) mini (f) mid point filter

d. Alpha-trimmed Mean Filter

d. Alpha-trimmed Mean Filter
Let there be $\mathrm{m} \times \mathrm{n}$ pixels in neighbourhood S_{xy}. Remove $\mathrm{d} / 2$ lowest and $\mathrm{d} / 2$ highest g glt
level valued pixels. Number of remaining pixels are $(\mathrm{mn}-\mathrm{d})$ which are represented by $\mathrm{g}_{\mathrm{r}}(\mathrm{s}, \mathrm{t})$. Restored image by alpha - trimmed mean filter is given by

$$
\begin{equation*}
\hat{f}(x, y)=\frac{1}{m n-d} \sum_{(s, t) \in S_{r}} g_{r}(s, t) \tag{6.26}
\end{equation*}
$$

Here d can range from 0 to $\mathrm{mn}-1$.
For $\mathrm{d}=0$, alpha trimmed filter $=$ Arithmetic filter
For $\mathrm{d}=\frac{m n-1}{2}$ alpha trimmed filter $=$ median filter

30	10	20		
10	250	25		
20	25	30		alpha-trimmed mean
:---:				
filter				

| x | x | x |
| :--- | :--- | :--- | :--- |
| x | 23 | x |
| x | x | x |

| (a) Input image |
| :--- | :--- |
| (b) Output image |

FIGURE 6.28: Example of alpha-trimmed filter with $d=2$

Let $\mathrm{d}=2$, we remove $\frac{d}{2}=1 \mathrm{~min}$ value (10 in this case) and $\frac{d}{2}=1 \mathrm{max}$ value (250 in this case) and then the value at (x, y) in image in fig 6.28 (a) $=\frac{1}{(9-2)}$ $[30+10+20+25+20+25+30]=22.85 \approx 23$

Ford $=4$, remove $2 \min (10,10$ in this case) and $2 \max (250,30$ in this case) valuesand
the new value at (x, y) in image fig $6.28(\mathrm{c})=\frac{1}{(9-4)}[30+20+25+20+25]=24$

30	10	20
10	250	25
20	25	30
(a) Input image		

\(\xrightarrow[\substack{alpha-trimmed mean

filter}]{\mathrm{d}=4}\)| x | x | x | |
| :--- | :---: | :--- | :---: |
| x | 24 | x | |
| x | x | x | |
| (b) Output image | | | |

FIGURE 6.28: Example of alpha-trimmed filter with $d=4$
This filter removes a combination of salt \& pepper and Gaussian noise.

Adaptive filters

* mean filters 4 order stasties filters alenot capable of distinquishing noise from pixel values.
* There filters replace all pinelvalues with mean/median which causes distortions
* Adaptive filters are capable of superior performance because its behaviours adapts to the change in characteristics of image area being filtered.
* This pres the complexity of the filter
(a) Adaptive Local Noise Reduction Filter
* This filter changes its action based on

* The simplest statistical mealule of a region $\delta_{x y}$. random variables are its mean $\&$ variance. These are the quantities closely * Tested to appearance of an image
* mean giles a measure of avg intensity in the region orel which wean is computed
2 * Variance gives
* These 2 palametes ale chosen to change the behavior of adaptive local noik
* filter is operated on a local region Say.
* The response of the filter at any point (x, y) on which the region is entered is to be based on 4 quantiticy
(1) $g(x, y) \rightarrow$ value of the noisy image at $(x, 4)$
(ii) $\sigma_{n}^{2} \Rightarrow$ valiance of noise commenting $f(x, y)$ to form $g(x, y)$
(ii) $m_{L}=$ Local mean of the pixels in say.
(iv) σ_{L}^{2} : Local valiance of the pixels in Say.
* Behaviour of noise seducing filter should de as follows
(1) If $\sigma_{n}{ }^{2}=0$; the filter should setuen simply the value of $g(x, y)$. [in case of nonoise]

$$
\therefore g(x, y)=\hat{f}(x, y) \text {. }
$$

$(2)+$ If the local variance is high relative to Vn^{2}, the filter should return a value close to $g(x, y)$.

* A high variance typically is associated with edges \& these should be preserved.
(3) If the 2 variances ale equal, we want the biter to return the arithmetic mean value of the pixels in say.
* This condition occurs when the local area has the same properties as the overallimaqe \& the local noise is to be reduced by averaging.
radaptive filter is given by

$$
\begin{aligned}
& \text { price filter is given wy } \\
& \qquad \hat{f}(x, y)=g(x, y)-\frac{\sigma_{n}^{2}}{\sigma_{L}^{2}}\left[\begin{array}{r}
g(x, y)- \\
m_{L}
\end{array}\right] \\
& \sigma_{n}^{2} \text {. is the only quantity that }
\end{aligned}
$$

$\sigma_{n}^{2}=$ is the only quantity that needs to be known or estimated is the variance of the overall noise $\sigma_{n}{ }^{2}$.

* The other parameters ale computed from the pixels in Soy, at each location $(x, 4)$ on which the filter window is centered.
- $\sigma_{L}^{2} \& M L$ is estimated for the selected area
(1) in case of no noise $\sigma_{n}^{2}=0$, then eq (1) becours

$$
\hat{f}(x, y)=g(x, y)
$$

(2) Incare of edqus $\sigma_{n}^{2}<\sigma_{L}^{2}$

Then $\frac{\sigma n^{2}}{\sigma_{L}^{2}} \approx 0$
substuting this in eq (1)

$$
\begin{aligned}
\hat{f}(x, y) & =g(s, t)-o[g(s, t)-h] \\
& \simeq g(\rho, t)
\end{aligned}
$$

(3) In case of presence of noil

Then eq (1)
If $\sigma_{n}^{2}=\sigma_{L}^{2}$ then $\frac{\sigma_{n}^{2}}{\sigma_{L}^{2}}=1$

$$
\begin{aligned}
& \hat{f}(x, y)=g(\rho, t)-\left[g(\rho, t)-m_{L}\right] \\
& \hat{f}(x, y)=m_{L}
\end{aligned}
$$

* Adaptive filter achieves approximately the same performance in noise reduction as the mean filter, but introduces less blurring than the mean filter.
- Thus adpative filter yields considerably better results in overall Jerformance at the price of filter complexity
* If the noise valiance is not estimated correctly, filter gives undesirable results
* If estimated valiance value is too low as compared to actual valiance, noise correction will be smaller than it should bl

II the estimate is too high, the noise correction is large \& op image loose dynamic sane
(b) Adaptive median filter,

* median filter performs well if the spatial density of the impulse noise is not large is, isipulse noise with smaller propability $\left(\mathrm{Pa}_{\mathrm{a}}+\mathrm{P}_{\mathrm{B}}<0.2\right)$.
* Adaptive median filtering can handle impulse noise with probabilities larger than these
* Additional benefit of the adaptiremean filter is it seeks to preserve detail while smoothing nonimpulse noise.
* main objective of the adaptive median filter is
* TO remove salt \& peper (impulse) noik
* To smoothen noise ores Brothel than impulse noik
* Tu reduce distortion of thinning \& thickening of edges.
* adapitine median filter worles in a rectangular window area $\mathrm{S}_{3 y} y$ like other filters

332 Chapter 5 Image Restoration and Reconstruction

a b
 c d

FIGURE 5.13
(a) Image corrupted by additive Gaussian noise of zero mean and variance 1000 .
(b) Result of arithmetic mean filtering.
(c) Result of geometric mean filtering.
(d) Result of adaptive noise reduction filtering. All filters were of size 7×7.

* unlike other filters, the adaptive mean median filter changes (increases) the size of $S_{x y}$ duling filter operation depending on certain conditions.
* Olp of the filter is a single value used to replace the value of the pixel at (x, y), the point on which the window $S_{x, y}$ is entered at a given time
* variables used in this pilgonthm are
$s_{x y}$ = rectangular window whose size prey duling orelation of adaptive filter centered at (x, y)
Zmin $=$ min grey level value in $5 x y$
$I_{\text {max }}$ - max grey level value in $5 x_{y}$
$z_{\text {med }}=$ median of grey values in $S x_{1} y$ $z_{x y}=$ grey level at $(x, 4)$
$S_{\max }=$ max allowed size say.
* In the algorithm, $I_{\text {min }}$ \& $I_{m a x}$ ale considered to be "impulse like" min

Algorithm of Adaptive median filter
Stage A :

$$
\left.\begin{array}{l}
A_{1}=Z_{\text {med }}-Z_{\text {min }} \\
A_{2}=Z_{\text {med }}-Z_{\text {max }}
\end{array}\right\} \text { (or) } \begin{aligned}
& \text { If } \\
& Z_{\text {min }}<Z_{\text {med }}<z_{\text {max }}
\end{aligned}
$$

If $A_{1}>0$ AND $A_{2}<0$ go to stage B
ewe increase the window size
If windowsize $\leq S_{\text {max }}$ repeat stage else output $=Z_{\text {med }}$.

Stage B':

$$
\begin{aligned}
& B_{1}=Z_{x y}-Z_{\text {min }} \\
& B_{2}=Z_{x y}-Z_{\text {max }}
\end{aligned}
$$

if $B_{1}>\dot{0}$ and $B 2<0$, op $Z_{x y}$ [do else output Zed now
file.]

* Explanation * To understand, the mechanics of this algorithm, the kep is to keep in mind that it has 3 main purpose.
-to remove salt \& peper (impulse) noile
- to provide smoothing of other noise that maynot be impulsive
Toto reduce distortion such as sideling excessive thinning or thickening of object boundaries
* The values $Z_{\text {min }}$ \& $Z_{\text {max }}$ are considered to be impulse -like noise component [$Z_{\text {min }}=$ pepernoise $\quad Z_{\text {max }}:$ saltnoise]
* $Z_{x y}=$ pixel value which is to be filtered.
* If Zxy is either salt noise or pepper noise, it should be replaced by median value
\rightarrow In the legion Soy, centered at (x, y) find the median value Kneed.
* Stage A checks is Zed is Impulse or not.
* Stage A: If Z med \neq impulse, then go to stage B. In stage B, we check if $z_{x y}$ is impulse or not
- $\frac{\rho+a_{u} \beta}{\text { i }}$. If $z_{x y} \neq \operatorname{mpulse}$, then there is no need to filter \& 0 lp value is same as Zxy

$$
\text { If } \begin{aligned}
Z_{x y}=\text { impulse }\left(z_{x y}\right. & =z_{\text {min }} 11 \\
z_{x u} & \left.=z_{\text {max }}\right),
\end{aligned}
$$

then olp = median value. (which is not noisy (husked at staqeA).
\rightarrow thus here we are ensuring α inn.
(1) In case of non noisy pixel \Rightarrow no filter action should take place, olp= $Z_{x y}$
(2) In case $z_{x y}$ is noisy, then it should de replaced by a non-noisy median value (If it is noisty stage A takes call).

* In case, the $1^{\text {At statement in stage A fail, }}$ then zed is either salt noise or peppernois, then in this case Zed canvit he used to replace a noisy pined $z x y$ at stage B.
* In stage B we ensule that median is never a noisy value
* TO do this size of window is ased 4 Zoned is tested ag a in for $Z_{\text {min }}<Z_{\text {mud }}$ \angle Z max
If the condn is true, we go to stage I ese again size of window ' s ' is ped till it leaches Smax.
* If max limits of window is reached 2 shill zed is noisy then op $=z x y$ ur e dort filter Zxy 2 of P is not zoomed which is also noisy
x every time op is genelated, window shifts 4 algorithm is reinitialized
* Advantage of this filter
(\$ only a noisy pixel is filtered [b if filtering is done, we mate sure that the median values is not noise

a b c
FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities $P_{a}=P_{b}=0.25$. (b) Result of filtering with a 7×7 median filter. (c) Result of adaptive median filtering with ${ }_{S_{\max }}=7$.
module 3
Assignment - 2

1. Explain the following preliminary concepts
(i) complex Numbers
(ii) Fourier series
(iii) impulses \& Their shifting property
(iv) Convolution.
(2) Find the Fourier Transforms of the fou
(i)

draw its FT 4 spectrum
(ii) Unit impulse q (ii,) shifted impulse $\delta\left(t_{t}\right.$. $)$
(iv) train of impulse

$$
S \Delta T(t)=\sum_{n=-\infty}^{\infty} \delta(t-n \Delta T)
$$

(3) Explain the process of sampling \& delive the FT of sampud fun
(4) Itate \& explain of ampling the oven \& highlight on Aliasing, \& Reconstruction function from sampled data
(5) Obtain the DFT from continous Transform of sampled function \& write the relationship bet sampling 4 freq interval
(b) fig@phous 4 samples of continuous fun $f(t)$ taken ΔT units apart. fig (b) shows the sampled values in the x-domain.
rote the values of x are $0,1,2,3$.
indicating as 4 samples of $f(t)$

ASSIGNMENT DEADLINE!.
15/04/2020[wed usda]

Morphological Image Processing
Morphology - branch of biology that deals with the firm is skuctrre of animals \& plants.
Mathematical mophology \longrightarrow tool for exkacting inge componats that are useful in the represatation \& description of regin. shape, such as boundaries, skeletons \& the convex hull.

Language of Mathematical mophology \longrightarrow Set the ty.
Preliminaries:-
Some basic ancepts from set the ry
Let) A be a set in z^{2}. If $a=(a 1, a z)$ in elenat of A, catherine $a \notin A$.
The set with no elements null of empty set $d=\{\omega / \omega=-d$ for $d \in D\}$ means C is a set f elements ω, \&s ω is fined by multiplying each o the 2 coordinates f all the elemate of set D by -1

$$
A \subseteq B \rightarrow A \text { is subset of } B \text {. }
$$

$C=A \cup B \rightarrow$ union of $A \& B$.
$D=A \cap B \rightarrow$ interstate.
$A \cap B=\phi \longrightarrow$ disjoint /mutually excluone. no common elemi.

$$
\begin{aligned}
& A^{C}=\{\omega / \omega \notin A\} \text { complement of } A \\
& A-B=\{\omega \mid \omega \in A, \omega \notin B\}=A \cap B^{C}
\end{aligned}
$$

Reflection of et $B \rightarrow \hat{B}=\{\omega / \omega=-b$, for $b \in B\}$.
Translation of set A by point $z=\left\{z_{1}, z_{2}\right\}$ denoted by $(A)_{2}$ is defined as

$$
(A)_{z}=\{c \mid c=a+z, \text { for } a \in A\}
$$

(A) 2

Logic operations involving Binary images
AND, OR \& NOT

p	q	$p \cdot q$	DOR	$\operatorname{NOT}(\bar{p})$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Oflation \& trosion
2 loy morphologial opecatios - Dilation \& Erosim. $2 \frac{2}{3}$ 6 5 w image $2 \xrightarrow{3}$ gray scole lmye.
Dilation :-
$A \& B$ as sels in 2^{2}, then
dilation of A by B denoted $A \oplus B$ in defined

$$
\text { as } \quad \begin{aligned}
A \oplus B & =\left\{2 /(\hat{B})_{2} \cap A \neq \phi\right\} \\
& =\left\{2 /\left[(\hat{B})_{z} \cap A\right] \subseteq A\right\}
\end{aligned}
$$

$B \rightarrow$ strucheing demat.
Dilation combines 2 set using rectir addition.

$$
\begin{aligned}
& \text { Di(ation } \quad(a, b)+\{, d)=(a+c, b+d)] \\
& A \oplus B=\left\{p \in R^{2} ; p=a+b, a \in A \& b \in B\right\} . \\
& E G:-\{(1,0),(1,1),(1,2),(2,2),(0,3), 10, b)\}
\end{aligned}
$$

$B=\{(0,0),(1,0)\}$ - skuchining element (Sutimage)

$$
\begin{aligned}
B & =\{(0,0),(1,0)\} \text { skuct }
\end{aligned}
$$

A.

Properties of dilation:-
(1) Commutative $A \oplus B=B \oplus A$
(2) Associative

$$
A \oplus[B \oplus D]=[A \oplus B]
$$

(3) $A \oplus B=\bigcup_{b \in B} A_{b}$
(4) Invaliat to traslation $A_{\text {g }} \oplus B=(A \oplus B)_{z}$
(5). If $A \subseteq D$ then $A \oplus B \subseteq D \oplus B$.

Appn \rightarrow Brifing gaps. (Eypansion of resim ifll or glow)
Erosion:-
For sets $A \& B$ in 2^{2} the ecosion of A by B, denoted $A \ominus B$, is defined as

$$
A \oplus B=\left\{z /(B)_{z} \subseteq A\right\}
$$

of $A \in B=\left\{p \in z^{2}: p=a+b \in A\right.$ fir leeey $\left.b \in B\right\}$

$$
\begin{aligned}
\text { of } A \ominus B & =\{P \\
\text { Eg:- } A & =\{(1,0),(1,1),(1,2),(0,3),(1,3),(2,3),(3,3),(1,4)\} \\
B & =\{(0,0),(1,0)\}
\end{aligned}
$$

$$
\begin{aligned}
& A=\{ \\
& B=\{(0,0),(1,0)\} \\
& A \Theta B=\{(0,3),(1,3),(2,3)\}
\end{aligned}
$$

$A \Theta B$

Shirt of reduce.
Dilation \& Erosion are duals of each other

$$
(A \ominus B)^{c}=A^{c} \oplus \hat{B}
$$

Opening and closing - opeections
Opening generally smoothes the contort f an object, breaks narrow isthmuses. \& eliminates thin protrusions. Closing \rightarrow fills gaps in the contonl.

Openif: $A \circ B=(A \oplus B) \oplus$
(1) B. erasion of A by B followed by dilation 8 the result by B.
$C \operatorname{cosin} A \cdot B=(A \oplus B)$
ΘB Dilation of A by B followed by eclosion of the rout by B.
opening s losing are duals of each other.

Properties opening. -
$\rightarrow A \circ B$ is a subset of A
\rightarrow If C is a sulset $q-D$, then $C \circ B$ in a sublet $f D \circ b$

$$
\rightarrow(A \circ B) \circ B=A \circ B .
$$

properties of closing: -
$\rightarrow A$ is a subset of $A \cdot B$
\rightarrow If C is a subset $f D$, then $C \cdot B$ is a sidect $q D \cdot B$

$$
\rightarrow(A \cdot B) \cdot B=A \cdot B
$$

Hit or miss tranfemation
\rightarrow for finding local patterns of pixels.
\rightarrow baric tool in shape defection:

$$
A \circledast B=\left(A \Theta B_{1}\right) \cap\left(A^{c} \Theta B_{2}\right)
$$

Set $A \oplus B$ contains all the points at which
simultaneously B_{1} found a match (Hit) in A s B_{2} found a match in A :

$$
\begin{aligned}
& \text { d a match in } A \text {. } \\
& \text { o } A \oplus B=\left(A \oplus B_{1}\right)-\left(A \oplus \hat{B}_{2}\right)
\end{aligned}
$$

Eg-

$A C$

1	1	1	1	1
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
	1	1	1	1

$$
\left(A \oplus B_{1}\right) \cap\left(A^{C} \oplus B_{2}\right)=\phi .
$$

Some barric Morphological degaithms
(1) Boundary Extraction:
$B(A) \longrightarrow$ Boundary of set A.

$$
\beta(A)=A-(A \Theta B)
$$

69:-

(2) Hole filling: - (Region fillin)

Backgoind region sureounded by a connected bordu of foztiond pibels.

$$
x_{k}=\left(x_{k-1} \oplus B\right) \cap A^{C}
$$

$(+B) \cap A^{C} \quad K=1,2$
Skuchtry elenent (Kyymmetic)
(3) Extraction of connected components

$$
\begin{aligned}
x_{k}=\left(x_{k-1} \oplus B\right) \cap A \quad & k=1,2,3 \ldots . . \\
x_{0} & =p
\end{aligned}
$$

(4) Convex thill: - set A is said to be 'convex' if the St, line segment joining any 2 points in A lies entirely within ' A '. The converse shell H if an arbiterey set is' is the smallest convex set containing S.

Differale $(H-S) \rightarrow$ Convex deficiency of S.
Convexthrlls Convex Deficiency are useful fir object desceiptim.
(5) Thinning : The thinning of a set A by a Skuctuing element B, denoted $A \otimes B$

$$
\begin{aligned}
A \otimes B & =A-(A \circledast B) \\
& =A \cap(A \circledast B) C
\end{aligned}
$$

A more useful explessim for thinning A symmetrically, is based on a seq of stuchuing elements.

$$
\begin{aligned}
& \text { on a seq of steuchuing elements } B^{1} \text { is a } \\
& \{B\}=\left\{B^{1}, B^{2} \cdot B^{3} \ldots . B^{n}\right\} \text { where } B^{1} \text { in }
\end{aligned}
$$

rotated version of B^{i-1}.

$$
A \otimes\{B\}=\left(C \cdots\left(\left(A \otimes B^{\prime}\right) \otimes B^{2}\right) \ldots \otimes B^{n}\right) \text {. }
$$

(b) Thickening:

Mophologicd dual of thinning \& is defined by

$$
A \odot B=A \cup(A \odot B)
$$

\Rightarrow Thinning of A is based on a sequence of structuring elements.

$$
\{B\}=\left\{B^{1}, B^{2}, B^{3}, \ldots \cdot B^{n}\right\}
$$

where $B^{i} \rightarrow$ rotated version of B^{i-1}
\Rightarrow Thinning by a sequence of structuring elements is

$$
A \otimes\{B\}=\left(\left(\cdots \quad\left(\left(A \otimes B^{1}\right) \otimes B^{2}\right) \cdot \ldots\right) \otimes B^{n}\right)
$$

\Rightarrow This process is to thin A by core pass with B^{\prime}, then thin the result with one pass of $B^{2} \&$ so on... Until A is thinned with ore pass of B^{n}.
\Rightarrow The entire process is repeated until no further changes owe.
$\varepsilon g:$

$$
B^{\prime} \rightarrow \text { ratite dank } \rightarrow B^{2}
$$

B^{6}

A

Note: thinking $=$ Center pixel $=\int 0$ completely match with $B\left(\right.$ diff $\left.^{\prime}\right)$ retain not "

Step 1: $A_{1}=A \otimes B^{\prime}$

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |

$A_{2}=A_{1} \otimes B^{2}$

$A_{3}=A_{2} \otimes B^{3}$

1	0	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	1	0	0	0
1	1	1	0	0	0	1	1	1	0	0

$A_{4}=A_{3} \otimes B^{4}$

1	0	0	0	0	0	0	0	1	1
1	1								
1	1	1	1	1	1	1	1	1	0
0									
1	1	1	1	1	1	1	1	0	0
0									
1	1	1	1	1	1	1	1	0	0
1	1	1	0	0	0	1	1	1	0

1	1	x
1	1	0
x	0	0

$$
A_{5}=A_{4} \otimes B^{5}
$$

$$
\begin{aligned}
& A_{6}=A_{5} \otimes 8 B^{6} \\
& \qquad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 1 & 0 & 0 & 0 & & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
A_{7}=A_{6} \otimes B^{7}
$$

$$
A_{B}=A \not O B^{8}
$$

1	0	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	0	0	0
1	1	1	1	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	1	0	0

$$
\begin{aligned}
& A_{8,4}=A_{8} \otimes B^{1,2,3,4} \\
& A_{8,5}=A_{8,4} \otimes B^{5} ; A_{8,6}=A_{8,5} \otimes B^{6} \text { \& so an }
\end{aligned}
$$

can be performed

Thickening:
\Rightarrow Dual of thinning

$$
A \odot B=A \cup(A \circledast B)
$$

$B \rightarrow$ structuring element suitable for thickening.
Also,

$$
\left.\left.A \odot\{B\}=\left(C \ldots\left(A \odot B^{\prime}\right) \odot B^{2}\right) \ldots\right) \odot B^{n}\right)
$$

expressed as a sequential operation
\Rightarrow Usually, for thickening we follow 2 steps in practise (a) thin the background (i.e $c=A^{c}$ thin c)
(b) Complement the result (i.e form c^{c}
\Rightarrow This method is followed to remove the disconnected points
eg:

Set A

$x=$ thinning the complement of A

complement of A

x^{c} (complement of $\left.x\right)$ thickened set

SKeleton:
\Rightarrow Given a point set A, the skeleton of A Can be found by

$$
\left.\begin{array}{l}
S(A)=\bigcup_{k=0}^{M} S_{k}(A) \\
S_{n}=(A \Theta K B)-[(A \Theta K B) \\
\uparrow
\end{array}\right]
$$

opening
\Rightarrow This ign n gives us a particular number of Sub skeletons \& the union of sub skeletons gives is the skeleton of the final of the given set A which is represented by $S(A)$
$\Rightarrow M \rightarrow$ the last ; terative step before A erodes to empty set $(A \otimes K B) \rightarrow A$ is filled with the structuring element B for successive K na. of times

$$
M=\max \{K \mid(A \otimes K B) \neq \phi\}
$$

Eg:

3
$\substack{3 \\ \vdots \\ \vdots \\ \vdots}$

Color Fundamentals
$1666 \rightarrow$ Isac Newton \rightarrow light parses tha' prism emeeges cont spectuen of light(cobors) VIBGYOR
Color \rightarrow humans perceive in an object \rightarrow natrie of light reflected from the object.
Gammu x-baps UV VS. IR thw Relio.
quality of list $\longrightarrow 3$ thes T Rediance
Bligtrass Luminance.
Chromatic liget \rightarrow visible spectim.

Radiance \rightarrow totel anout of eneyy flows ferm the lighto sonce (cotts) w pelcieved by obsewee (humens) lem Laminance \rightarrow Brigtress \rightarrow annot be meamed $\quad($ intersity $)$.

primaly colos \rightarrow are seen
due to absoption of human eye.

6-7 miltion concs ave theee in humam eye \wedge 3 plincpel cotegires senvitive of $R G B$. 65% cones $\rightarrow R$ 33% 2.1
$\mathrm{CIE} \rightarrow$ standaed $1931 \rightarrow$ specific w/L. 435.8 mm - Blue Commion Internationale $546.1 \mathrm{~nm} \rightarrow$ Green de I'Eclaseage
$700 \mathrm{~nm} \rightarrow$ Red

Plomaky \rightarrow added \rightarrow Serondaiy colors of light.

$$
\begin{aligned}
& \text { Magento } \rightarrow(R+B) \\
& \text { Lyas } \rightarrow(G+B) \\
& \text { Yellou } \rightarrow(R+G)
\end{aligned}
$$

Mooig plemey \rightarrow wheto
miory Secondy \rightarrow Blace,
Plimaly colos of light $\rightarrow \begin{gathered}\text { absolbs one catr } \& \text { seffects the othe } \\ 26 \text {-pring }\end{gathered}$ pelioney despigemente $\rightarrow \mathrm{CYM} \rightarrow$ secondy
cym
$R S_{B} \rightarrow$ Secondag.
Hhe \rightarrow do disthgosh deffent colos percieved by an obsenver: (domenat o/L)

Satreatio \rightarrow amont of white ligat maxed sito hue.
Cg:- pink (red +ibute) is less samected.
Lavendre (violet + vhite)
Brightress \rightarrow Cheonatic notion of intersity.
Hhe + Satweam together is celled "Cheomaticity'
Color may be characterizzed by its Brighess \&
Tristioulus values $\begin{array}{ll}x, y \& 2 . \quad x, y \& z \rightarrow \text { fricheomatic } \\ R & G\end{array}$
$R \quad G \quad B$

- Chromaticity Diagem.

SN specter every locus.

This chromatic diaglom is useful for color mixing: a st. line joining an 2 pints in the diagram defines all the different color valiations that con be obtained by combining these 2 colors additively.

Color Models
Color model is a specification of a coordinate system is represented by a. i
Now a dogs most cols models are diented to wards hardware (such as for color monitor \& printers) or towards applications where color manipulation is a goal.
(such as in the creation of colt graphics fir animation).
The ace 3 models.-
(1) RGB (Red, Green, Blue) model for color monitors a broad class of colo video cameras.
(2) Cay (cyan, magenta, Yellow) model - color CMYK \longrightarrow including black.
(3) HSI (Hue, Satiation \& Intensity) model
\longrightarrow mainly fo grayscole techniques.

RGB color Model - $\begin{aligned} & R \in B \rightarrow \text { primary colds } \\ & \text { Rises }\end{aligned}$
The model is based on a cartesian coordinate system.

Primary colors (RGS) ace at 3 corners.
Secondary colors (CMY) dee 3 other cones.
Black is at the digin white is at the corner farthest from the origin.
The gray scale (points of equal RGB values) extends from black to white along the line joining 2 points.

CMY \& CMYK color models
Peimory colors of pigments and Secondary cols of light.
Egi- when a surface is coated with cyan pigment \rightarrow illuminated with white light \& no red light is reflected from the surface.
is cyan subtracts Red light from reflected white light R GB to COy conversion

$$
\left[\begin{array}{l}
C \\
m \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
R \\
S \\
B
\end{array}\right]
$$

$$
\begin{aligned}
& C=1-R=G+B \\
& m=1-G=R+B \\
& y=1-B=R+G .
\end{aligned}
$$

HS I colon model
Hue \rightarrow is a color attribute that describes a pure Color (like pule yelloo/orage(red) Were as Saturation gives a measure of the degree to which a pure color is diluted by white light.
Brightness is a subjective descriptor that is plactically impartible to measure.
HSI model \longrightarrow ideal for developing image pleasing algorithms.

RGB to HSI
their $H= \begin{cases}\theta & \text { if } B \leqslant G \\ 360-\theta & \text { if } B>G .\end{cases}$

$$
\text { with } \theta=\cos ^{-1}\left\{\frac{\frac{1}{2}[(R-G)+(R-B)]}{\left[(R-G)^{2}+(R-B)(G-B]^{\frac{1}{2}}\right.}\right\}
$$

Saluector: $S=1-\frac{3}{(R+G+B)}[\min (R, G, B)]$
Intensity: $I=\frac{1}{3}(R+\xi+B)$
Assume the $R G B$ values have been normalized to the range $[0,1]$ \& the angle O is measued wrt redacis of HSI space.

HSI to RGB
There are 3 sectios of interst, coresponding to 120° intervals in the sepalation of plinaries.
(1) RG sectir: $\left(0^{\circ} \leqslant H \leqslant 120^{\circ}\right)$
$R G B$ conponents ace given by

$$
B=I(1-s)
$$

$$
\begin{aligned}
& R=I\left[1+\frac{S \cos H}{\cos \left(60^{\circ}-H\right)}\right] \\
& H G=3 I-(R+B)
\end{aligned}
$$

(2) GB sector: $\left(120^{\circ} \leqslant H \leqslant 240^{\circ}\right)$
new ${ }_{267}=H-120^{\circ}$

KGB components ace:

$$
\begin{aligned}
& R=I(1-S) \\
& G=I\left[1+\frac{S \cos H}{\cos \left(60^{\circ}-H\right)}\right] \\
& B=3 I-(R+G)
\end{aligned}
$$

(3) BR sector $\left(240^{\circ} \leq H \leq 360^{\circ}\right)$

$$
\text { then new } H=H-260^{\circ}
$$

the RGB components ane

$$
\begin{aligned}
& G=I(1-S) \\
& B=I\left[1+\frac{S \cos H}{\cos \left(60^{\circ}-H\right)}\right] \\
& \& R=3 I-(G+B)
\end{aligned}
$$

Pseudo color Image Processing (also collet false color)
\rightarrow assigning $\frac{\text { colors to gray values based on a }}{\text { specified criterion. }}$ specified criterion.
\rightarrow Principal use of preudocolor is for human Visualization \& interpretation of gray.
in an inge or seq. I images.
in an comage or seq. fo ling color is
\rightarrow One of the principal humans con discern thousands of the fact that humans compared to only 2 color shades os intensities, dozens or so shades of gray.

Intensity slicing
the technique o intensity slicing (density slicing) \& color coding is one of the singlest examples of pseudo color image processing.

when more levels are used, the mapping function takes on a staircase form.

Gray-livel to color thensfinction

$$
f(x, y) \xrightarrow{\square \text { Red rath }} \rightarrow f_{R}(x, y)
$$

Functional block diagram for pseudo cold image peoassing. $f_{R}, f_{G} \& f_{B}$ au fed into the corresponding Red, Green \& She ilps if an $R G S$ color monist.

